
Proceedings of the 5th Workshop on Hot Issues in
Security Principles and Trust

Hotspot 2017
April 23rd 2017, Uppsala, Sweden

1

HotSpot 2017 preface

Preface

This volume contains the papers presented at the 5th Workshop on Hot Issues in Security
Principles and Trust (HotSpot 2017) held on April 23rd, 2017 in Uppsala, Sweden.

The program includes one invited talk and eight accepted regular papers. Each submission
was reviewed by three program committee members.

The workshop is intended to be a less formal counterpart to the Principles of Security and
Trust (POST) conference at ETAPS with an emphasis on ”hot topics”, both of security and of
its theoretical foundations and analysis.

I would like to thank Andrei Sabelfeld for accepting to give an invited talk at this work,
the authors for their contributions and for making this workshop possible, and the program
committee members for their excellent work in reviewing the submitted papers and for their
help in putting together an exciting program. I would also like to thank the members of my
group, in particular Daniel Rausch for maintaining the workshop’s web site.

March 10, 2017
Stuttgart

Ralf Küsters

i

HotSpot 2017 Program Committee

Program Committee

Aslan Askarov Aarhus University
David Basin ETH Zurich
Veronique Cortier CNRS, Loria
Cas Cremers University of Oxford
Riccardo Focardi Università Ca’ Foscari, Venezia
Joshua Guttman Worcester Polytechnic Institute
Boris Köpf IMDEA Software Institute
Ralf Küsters University of Stuttgart (PC chair)
Ninghui Li Purdue University
Frank Piessens Katholieke Universiteit Leuven
Tamara Rezk INRIA
Mark Ryan University of Birmingham
P. Y. A. Ryan University of Luxembourg
Geoffrey Smith Florida International University
Nikhil Swamy Microsoft Research

1

HotSpot 2017 Table of Contents

Table of Contents

Taint Tracking without Tracking Taints (Invited Talk) . 5

Andrei Sabelfeld

Combining Graph-Based and Deduction-Based Information-Flow Analysis 6

Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten and Marko Kleine
Büning

A Linguistic Framework for Firewall Decompilation and Analysis . 26

Chiara Bodei, Pierpaolo Degano, Letterio Galletta, Riccardo Focardi, Mauro Tempesta
and Lorenzo Veronese

A Runtime Monitoring System to Secure Browser Extensions . 30

Raúl Pardo, Pablo Picazo-Sanchez, Gerardo Schneider and Juan Tapiador

Making decryption accountable. 35

Mark Ryan

Securing the End-points of the Signal Protocol using Intel SGX based Containers 40

Kristoffer Severinsen, Christian Johansen and Sergiu Bursuc

On Composability of Game-based Password Authenticated Key Exchange 49

Marjan Skrobot and Jean Lancrenon

On the Content Security Policy Violations due to the Same-Origin Policy. 57

Dolière Francis Some, Nataliia Bielova and Tamara Rezk

Securing Concurrent Lazy Programs. 67

Marco Vassena, Joachim Breitner and Alejandro Russo

Taint Tracking without Tracking Taints

Andrei Sabelfeld

Chalmers University of Technology, Gothenburg, Sweden

Taint tracking has been successfully deployed in a range of security applications to
track data dependencies in hardware and machine-, binary-, and high-level code. Pre-
cision of taint tracking is key for its success in practice: being a vulnerability analysis,
false positives must be low for the analysis to be practical. This talk presents an ap-
proach to taint tracking, which, remarkably, does not involve tracking taints throughout
computation. Instead, we include shadow memories in the execution context, so that
a single run of a program has the effect of computing on both tainted and untainted
data. On the theoretical side, we present a general framework and establish its sound-
ness with respect to explicit secrecy, a policy for preventing insecure data leaks, and its
precision showing that runs of secure programs are never modified. We show that the
technique can be used for attack detection with no false positives. On the practical side,
we present DroidFace, leveraging the approach by a source-to-source transform, and
benchmark its precision and performance with respect to state-of-the-art static and dy-
namic taint trackers for Android apps. The results indicate that the performance penalty
is tolerable, while achieving no false positives/negatives on the standard benchmarks.

The talk draws on the work reported in the following two publications: Explicit Se-
crecy: A Policy for Taint Tracking, published with Daniel Schoepe, Musard Balliu, and
Benjamin C. Pierce in the Proceedings of the IEEE European Symposium on Security
and Privacy (EuroS&P), 2016, and Let’s Face It: Faceted Values for Taint Tracking,
published with Daniel Schoepe, Musard Balliu, and Frank Piessens in the Proceedings
of the European Symposium on Research in Computer Security (ESORICS), 2016.

Combining Graph-Based and Deduction-Based
Information-Flow Analysis

Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten, and
Marko Kleine Büning

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{beckert,simon.bischof,herda,kirsten}@kit.edu,

marko@kleinebuening.de

Abstract. Information flow control (IFC) is a category of techniques for
ensuring system security by enforcing information flow properties such as
non-interference. Established IFC techniques range from fully automatic
approaches with much over-approximation to approaches with high pre-
cision but potentially laborious user interaction. A noteworthy approach
mitigating the weaknesses of both automatic and interactive IFC tech-
niques is the hybrid approach, developed by Küsters et al., which – how-
ever – is based on program modifications and still requires a significant
amount of user interaction.
In this paper, we present a combined approach that works without any
program modifications. It minimizes potential user interactions by apply-
ing a dependency-graph-based information-flow analysis first. Based on
over-approximations, this step potentially generates false positives. Pre-
cise non-interference proofs are achieved by applying a deductive theorem
prover with a specialized information-flow calculus for checking that no
path from a secret input to a public output exists. Both tools are fully
integrated into a combined approach, which is evaluated on a case study,
demonstrating the feasibility of automatic and precise non-interference
proofs for complex programs.

1 Introduction

When sensitive information leaks to unauthorized parties, this is often a result
from bugs and errors introduced in the system during software development. In
order to prevent such a leakage, we analyze systems for the absence of illegal
information flows, also defined as confidentiality [20]. An established approach
for proving confidentiality for a system is to prove the non-interference property.
Non-interference holds if there is no illegal information flow from a secret (high)
input to a public (low) output of the system.

There are a variety of different techniques for checking non-interference.
Within this work, we distinguish these techniques by their required user interac-
tion and the precision of their checks. These are (a) fully automatic approaches
based on type checking [23] or dependency graphs [7], which require no user
interaction. Due to decidability problems, this automation comes at the cost

of over-approximation and therefore can generate false positives. A false posi-
tive is a situation where the approach indicates an illegal information flow, even
though there is none. Tools implementing such techniques are, e.g., JIF [18]
and JOANA [14]. There are also (b) interactive techniques based on theorem
provers that do not run automatically, but achieve more precise non-interference
checks [3]. Interactive approaches do not generate false positives, but require a
high degree of time- and user-interaction.

Küsters et al. developed a hybrid approach that combines an automatic
dependency-graph analysis with a theorem prover to minimize the user-effort
of non-interference proofs [16]. The hybrid approach attempts to show non-
interference with the dependency-graph analysis tool and –if not successful– the
user must extend the program such that the affected low output is overwrit-
ten independently of the high inputs. Hence, the proof task is divided into two
parts, one equivalence proof for the theorem prover, and one non-interference
check with the dependency-graph analysis. In this paper we provide an alterna-
tive way to combine both tools, thereby not requiring the user to modify the
original program in any way, and thus automating large parts of the combination
that requires user interaction.

Our contribution is a new combined approach that improves state-of-the-art
approaches regarding the automation while maintaining the same level of preci-
sion. The combined approach attempts to show the non-interference property of
a program using the dependency-graph tool. If the attempt fails, the reported
leaks are disproved with the theorem prover. The communication between the
two approaches is fully automated: the reported leaks are analyzed one by one
and the information flow proof obligations necessary to disprove the leaks are
generated and given to the theorem prover. The user can simply provide the pro-
gram (with high sources and low sinks annotated) to our tool-chain and attempt
to prove non-interference. The user does not need to analyze the output of the
dependency-graph analysis tool and manually extend the program. The proof
obligations for the theorem prover consist of code with generated specification
that need to be proven in order to show that the reported leaks are false posi-
tives. However, the user might need to provide additional auxiliary specification
(e.g., loop invariants) in order for the proof attempt to succeed, this is generally
an undecidable problem.

We implemented this new combined approach for the Java programming
language focusing on sequential and terminating programs. For the implementa-
tion, we chose JOANA [14] as the dependency-graph analysis tool and KeY [1] as
the theorem prover, both based on state-of-the-art approaches. The approach is
evaluated based on examples and a small case study for which JOANA by itself
returns false positives. For these examples, a direct non-interference proof with
KeY would require a high degree of user interaction in the form of specifications
and proof-interactions. Based on these examples, we show that our approach can
prove non-interference automatically but also indicate limits in automation.

We give definitions and background information on logic- and graph-based
information-flow analysis underlying the IFC tools JOANA and KeY in Section 2.

In Section 3, we present our combined approach and its guaranteed properties.
The implementation including the specification generation and heuristics for an
efficient selection of proof obligations is described in Section 4, and evaluated on
a number of case studies in Section 5. In Section 6, we discuss related work, and
finally conclude in Section 7.

2 Non-Interference

In order to prevent sensitive information from leaking to unauthorized parties,
we analyze programs for the absence of illegal information flow. If such an anal-
ysis succeeds, we have shown that this program maintains confidentiality of the
specified sensitive information with respect to the specified unauthorized parties.
In general, the situation can be more complex, and not only two, but a multi-
tude of different sensitivity levels may exist as, e.g., already expressed in the
Bell-LaPadula security model [4] establishing access control mechanisms, and
extended by the lattice-model thereby establishing a formal notion of informa-
tion flow [8]. This emerged to more general techniques, denoted by information
flow control (IFC), which check that no secret input channel of a given program
may influence what is passed to a public output channel [10].

In its simplest form, i.e., there is no information flow, this is known as non-
interference. With this generalized notion, it suffices to regard only two security
or confidentiality levels, in the following referred to as high confidentiality and
low confidentiality, as we abstract from the leakage itself, and instead analyze the
program’s potential for information leakage from a specified (information) source
to a specified (information) sink. A sink specifies the (program) location, where
an unauthorized party may be able to observe the potentially secret information,
i.e., we call this a publicly observable location. We hence want to check that any
two different executions of a program P with different secret inputs (i.e., coming
from sources specified as high) ih, i′h and the same public input (i.e., coming
from sources specified as low) i` must be indistinguishable in their publicly-
observable output (i.e., sinks specified as low sinks). Note that this is stronger
than dynamically searching for illegal flows during run-time, as when proven to
be non-interferent, no illegal information flow is possible for any execution of the
program. A given security lattice can hence also be specified as pairs of sources
and sinks.

Within this work, we examine and make use of two different language-based
types of techniques for IFC [21], namely dependency-graph-based techniques
transforming the program into a graph and hence performing specialized graph
traversal algorithms [12], as well as logic-based techniques based on a deductive
theorem-prover approach symbolically executing the program twice and hence
performing a logic-based calculus on the composition of both executions [6]. One
main difference is that the dependency-graph analysis is done on the whole sys-
tem, and the self-composition is done modularly for each involved method, allow-
ing for reasoning about the whole system based on specialized method contracts.
Note that we focus on techniques operating directly on either the program’s

source or byte code without the need for any manual program modifications.
Language-based approaches, in our sense, refer to IFC techniques considering
potential attackers being able to evaluate expressions, but not able to observe
changes in the memory directly. Furthermore, we only consider deterministic
sequential programs and do not regard concurrent flows.

2.1 SDG-based Approaches

JOANA is a tool for checking the non-interference property for a given program.
It builds a system dependency graph (SDG) from the program code. A formal
definition of an SDG is given in [9]. The nodes represent statements and the
edges represent dependencies between those statements. JOANA is able to detect
direct dependencies, which are also called data dependencies [11], and indirect or
control dependencies [11]. Furthermore, there are special nodes, e.g., for method
calls, field accesses and exceptions.

For a method we have special formal-in nodes and formal-out nodes. Formal-
in nodes represent all direct inputs that influence the method execution. These
are the input parameters, used fields, other classes that are called during execu-
tion and the class in which the method is executed. The formal-out nodes repre-
sent the influence of the method. In most cases the formal-out node represents
the method’s return value. Other possibilities are that the method influences
global variables, fields in other classes or terminates with an exception.

1 int f(int x, int y) { return x; }
2

3 void caller() { ...
4 f(a,b); ...
5 }

Listing 1. Method call

For function f in Listing 1, we would have two formal-in nodes for x and y and
one formal-out node for the return value of f. At each method call site, we have
actual-in nodes representing the arguments and actual-out nodes representing
the returned values. For a given method site, each actual-in node corresponds
to a formal-in node of the callee and vice versa. The same holds for actual-out
and formal-out nodes. For the call in Listing 1, there are actual-in nodes for
a and b, corresponding to the formal-in nodes of f for x and y, respectively.
We also have one actual-out node representing the return value of f, which
corresponds to the single formal-out node of f. For every method call we also have
so called summary edges [9] in the SDG from any actual-in node to any actual-
out node of the method whenever the tool finds a flow between the corresponding
formal-in to the formal-out node of the called method. In Listing 1, we have a
flow in f from x to the result, so a summary edge is inserted at the call site,

namely from the actual-in node representing a to the single actual-out node.
For a complex method there can be a huge number of actual-in and actual-out
nodes and therefore an even greater number of summary edges. For our combined
approach, we focus on summary edges that belong to a chop between high and
low and it thus is sufficient to regard only a smaller subset of these edges. A
chop from a node s to a node t consists of all nodes on paths from s to t in the
SDG. It is commonly computed by intersecting the backward slice for t with the
forward slice for s. An example of an SDG generated from a program is given in
Giffhorn’s thesis on page 18 [9].

Through graph analysis, namely through slicing and chopping on a syntactic
level, [11] JOANA is able to detect an information flow. As with KeY, there are
some specifications required. But in comparison to KeY, these are rather light-
weight. The user must annotate which variables contain secure (high) or public
(low) information. After these annotations have been made, JOANA can run the
information flow analysis automatically. If the analysis returns that there is no
illegal information flow, JOANA guarantees that the program is secure.

Before we give specific property definitions, we introduce the relation low-
equivalent (∼L) for the term state. We base our definitions on Wasserab’s thesis
[24]. A state s is a program state, consisting of variable values and storage
locations. We assume that the input of a program is included in the initial state
and the output of a program is included in the final state. Two states s, s′ are
low-equivalent if all low variables have the same value.

We only regard sequential programs here. Thus, we want to prove a prop-
erty called sequential non-interference or classical non-interference as shown in
Definition 1 [24]. If for a sequential program, JOANA returns that there is no
illegal information flow, sequential non-interference holds for that program [24].
Note that this definition is equivalent to Definition 4 and hence also guaranteed
by non-interference proofs done with KeY.

Definition 1 (Sequential non-interference (SNI)). Let P be a program. Let
s, s′ be initial program states, let JP K(s), JP K(s′) be the final states after executing
P in state s resp. s′. Non-interference holds iff

s ∼L s′ ⇒ JP K(s) ∼L JP K(s′) .

JOANA guarantees that for a program P it finds secure, if two initial states
are low-equivalent then the final states, after executing P from each of the two
initial states independently, are also low-equivalent. In case SNI is violated,
JOANA generates at least one violation, and can calculate the respective vi-
olation chops as well.

2.2 Logic-based Approaches

When attempting to prove non-interference with respect to existing software
programs, precision can only be attained by taking functional properties into
account. For example, a program such as “low = high * 0;” can only be proven

to be secure with knowledge about the functionality of *. Similarly, for proving
non-interference of the program “if (high) low = f1(); else low = f2();”, we
need to verify that f1 and f2 compute the same value.

We start with the standard dynamic logic definition from [6], which defines
non-interference as a problem of value independence (Definition 2). Dynamic
program logics allows to reason about the program P as well as program variables
h of high confidentiality, and l of low confidentiality. The predicate .= is to be
evaluated in the post-state of P.
Definition 2 (Non-Interference as value independence). When starting P
with arbitrary values l, then the value r of l – after executing P – is independent
of the choice of h.

∀l ∃r ∀h 〈P〉 r .= l

Non-interference verification using self-composition. Amtoft et al. intro-
duced an approach based on a Hoare-style logic, which formalizes non-interference
as an “indistinguishability” relation on program states [2]. As such, the foremost
functional verification task now becomes relational by comparing two runs of
the same program, performed by a technique called self-composition as pro-
posed, e.g., in [3,6]. Furthermore, we can abstract from a concrete location and
instead talk about location sets. Based on the notion of low-equivalence as in
Definition 3, we obtain the notion given in Definition 4, where low-equivalence
refers to identity on all low variables [6,22]. Note that by self-composing the pro-
gram to two instances, we got rid of the existential quantifier, thereby enabling
automatic verification techniques as we avoid the difficult quantifier instantia-
tion.

Definition 3 (Low-equivalence). Two states s, s′ are low-equivalent iff they
assign the same values to low variables (with L denoting the set of all low vari-
ables in state s).

s 'L s′ ⇔ ∀ v ∈ L (vs = vs
′
)

Definition 4 (Non-Interference as self-composition). Let P be a program
and L1, L2 two sets of low variables. Then starting two instances of P in two
arbitrary low-equivalent states (on arbitrary high values however) results in two
final states that are also low-equivalent.

s1 'L1 s
′
1 ⇒ [P]s2 'L2 [P]s′

2

These findings were extended by a fully compositional information-flow cal-
culus for Java based on a deductive theorem prover for functional program verifi-
cation [1,22]. It deals with object-oriented software by allowing for two different
semantics, distinguishing on whether object creation is low-observable or not.
For the new semantics, we assume that references are opaque, in particular ob-
ject comparison can only be done via the operator ==. Furthermore, we assume
isomorphisms πi on objects such that π1 and π2 are compatible, i.e., for an ob-
ject o, π1(o) = π2(o) holds if o is observable in both states s1 and s2. Then,
low-equivalence can be generalized by Definition 5.

Definition 5 (Low-equivalence with isomorphism). Two states s, s′ are
low-equivalent iff they assign the same values to low variables (with L denoting
the set of all low variables in state s).

s 'πL s′ ⇔ ∀ v ∈ L (π(vs) = vs
′
)

The calculus and means for specification are implemented in the KeY system
[1]. KeY is a deductive theorem prover for Java programs based on JavaDL, a
first-order dynamic logic for Java, which allows to reason directly about Java
programs on a language-level with an explicit heap variable and changes to the
program state translated into so-called updates operating on the heap. Thereby,
the program can be symbolically executed directly in the logic.

In JavaDL, we can express non-interference based on Definition 4 using heap
variables within update operations as given in Definition 6. The updates as a
means to change program states are denoted by curly braces.

Definition 6 (Non-Interference as self-composition in JavaDL).

∀inl ∀in1
h ∀in2

h ∀out1l ∀out2l {low := inl}(
{high := in1

h}[P] out1l = low

∧ {high := in2
h}[P] out2l = low

→ out1l = out2l

)

The postcondition can be weakened by only proving the variables to be equal
up to isomorphism.

The KeY system proves non-interference or other program properties modu-
larly on the program code on Java method level, specified using method contracts
as well as auxiliary specifications such as loop invariants inside the method by
the modelling language JML*. The formulation of these specifications always
depends on the outcome to be proven and describes, e.g., the non-interference
property of the program. After the specification is complete, KeY transforms it
into equivalent formulas in Dynamic Logic and performs a proof using the se-
quent calculus. In general, the problem is undecidable and verification sometimes
requires some user-interaction. KeY is capable of verifying non-interference for
Java programs and covers a wide range of Java features. Proofs are constructed
in a precise manner based on a deductive rule base with the possibility of in-
specting the proof tree later-on.

Non-interference specification. Information-flow properties are specified in
KeY using an extension of the Java Modeling Language (JML) [17], thereby
introducing special determines clauses for expressing a fine-grained information
flow control [22]. These constructs can be used for modular specifications on the
method level as well as for enhancing loop invariants for the self-composition of
loop statements and block contracts for the self-composition of arbitrarily chosen
blocks of statements enclosed by curly braces.

The central specification elements for IFC purposes consist of the two key-
words determines and \by both followed by a comma-separated list of JML
expressions. The determines clause states that the JML expressions found after
the determines keyword depend only on the JML expressions found after the
\by keyword. This can furthermore be followed by the keyword \new_objects
for specifying fresh objects to be included in the isomorphism. With this toolkit,
powerful specification elements are given for proving non-interference, also al-
lowing for declassification.

3 The Combined Approach

In this section, we present our approach that combines the advantages of precise
logic-based approaches based on theorem provers, such as KeY, and automatic
SDG-based approaches using graph-traversal algorithms, such as JOANA. We
argue that our approach gurantees the SNI property for a given program and
specified sources and sinks.

In the following, we describe our combined approach on the example of prov-
ing non-interference for a given program P . In Section 2.1, we established that
SDG-based IFC techniques can detect any illegal information flow. Hence, if the
SDG-analysis indicates that there is no illegal information flow for the program
P , we need no further action as it is guaranteed that non-interference holds. The
combined approach is used in case the automatic SDG-based approach detects
an illegal information flow and we want to check whether this information flow
is a false positive or a genuine leak.

For the information flow check, we first create a system-dependency graph
(SDG) as defined in [9]. The created SDG is over-approximated and thus may
contain edges which do not represent an actual flow in the program, hence po-
tentially leading to false positives. Our approach assumes that the SDG nodes
corresponding to high inputs and low outputs are annotated as high and low
respectively. Furthermore, Nh denotes the set of all nodes annotated as high,
and N` the set of all nodes annotated as low. There is an illegal information flow
if information may flow from a node that is annotated as high to a node that is
annotated as low. If any set of Nh or N` is empty, there is no illegal information
flow.

After the SDG has been annotated by the user, the automated tool runs an
information flow check. This check returns a set of violations. A violation is a pair
(nh, n`) of a high node nh ∈ Nh (secret source) and a low node n` ∈ N` (public
sink) such that there is a path from nh to n`. We then call the set of all nodes
lying on a path from nh to n` the violation chop c(n`, nh). To keep the notation
simple, we will also use c(nh, n`) for the subgraph induced by those nodes. The
set of all violation chops is denoted by CV . If this set is empty, the SDG-based
approach guarantees non-interference, independently from our approach. If –
however – there is a false positive, CV contains at least one chop. The idea of
the combined approach is then to validate each violation chop c(nh, n`) ∈ CV
and try to prove it does not exist on the semantic level in program P . We show

this by verifying each chop to be interrupted (see Definition 7) with the help of
a theorem prover.

Definition 7 (Unnecessary summary edge, Interrupted violation chop).
A summary edge e = (ai, ao) is called unnecessary if we can prove with a theorem
prover that, in the context of the SDG, there is no flow from the formal-in node
fi to the formal-out node fo corresponding to ai and ao, respectively.

A violation chop is interrupted, if we find a non-empty set S of unnecessary
summary edges on this chop, such that after deleting the edges in S from the
SDG, no path exists between the source and the sink of the violation chop.

In order to show that a summary edge e = (ai, ao) is unnecessary, a proof
obligation is generated for the theorem prover. This proof obligation states that
there is no information flow from fi to fo. The proof is done for the method
corresponding to the summary edge e and is generally done for all possible
contexts. Additionally, results from software analyses done by the SDG-based
approach (e.g., points-to analysis) are used to generate a precondition for the
analyzed method thus increasing the likelihood of showing non-interference for
that method and interrupting the violation chop.

Our approach attempts to interrupt each violation chop in CV . For each
violation chop a summary edge is taken, the appropriate information flow proof
obligation is generated for the method corresponding to the summary edge,
and a proof attempt is made using the theorem prover. Our non-interference
transformation directly converts the summary edge information to a specification
for KeY. If the proof is successful, the summary edge can then be deleted from
the SDG based on Definition 7.

Note that this is possible as KeY’s (object-sensitive) non-interference prop-
erty is at least as strict as SNI (Definition 1). This however only holds without
the opaqueness assumption, i.e., only for KeY’s standard non-interference se-
mantics based on Definition 3 and not Definition 5. If this obligation is chosen,
low-equivalence of states from Definition 1 matches low-equivalence of heap loca-
tions from Definition 6. In conclusion, we can state that KeY’s non-interference
property is equivalent to SNI (Definition 1). This implies Theorem 1.

Theorem 1 (Non-Interference Combined Approach). The combined ap-
proach guarantees sequential non-interference.

We then check whether this violation chop is interrupted, in which case we
can proceed to analyse the remaining violation chops until all of them are inter-
rupted. If the violation chop is still not interrupted, or in case the proof attempt
is not successful, another summary edge from the violation chop is chosen. If
we are able to interrupt every violation chop by deleting unnecessary edges, our
approach guarantees non-interference.

Note that each violation chop is guaranteed to contain at least one summary
edge, namely the one corresponding to the main method. Generating a proof
obligation for the main method – however – is equivalent to verifying the entire
program with the theorem prover.

Proofs with the theorem prover are often performed fully automatically, but
may sometimes need auxiliary specification and user interaction. Therefore, we
want to minimize the theorem prover usage as much as possible. We hence de-
veloped a number of heuristics for choosing the order in which the edges are
checked by the theorem prover.

4 Implementation

We implemented the combined approach using JOANA as the dependency-graph
analysis tool and KeY as the theorem prover. In this section, we show how we
generate the proof obligations for KeY in the form of specified Java code and
also describe the heuristics choosing the summary edges that are to be analyzed
by KeY.

4.1 Method Contracts

For the method corresponding to the summary edge selected by the heuristics
we generate an information flow method contract such that a successful proof
would show that there is in fact no dependency between the formal in and formal
out node of the summary edge.

Thus, to show that a summary edge se(ai, ao) is unnecessary we prove that
there is no information flow between the corresponding formal-in node fi and
formal-out node fo. In order to achieve this, we generate a JML specification
for the appropriate method stating that fo is determined by all formal in nodes
other than fi, as explained in Definition 8.

Definition 8 (Generation of the determines clause). Let se(ai, ao) be the
summary edge to be checked, and let fi and fo be the formal nodes corresponding
to the actual nodes ai and ao. Let Li be a list of all formal-in nodes f ′

i other than
fi of the method belonging to the call site of ai and ao. The following determines
clause is added to the method contract: determines fo \by Li.

Should the proof of this property succeed then it would show that fo does
not depend on fi and therefore ao does not depend on actual-in parameter ai.
Since there is no dependency between ai and ao the summary edge can be safely
deleted from the violation chop.

In order to avoid some false positives, JOANA uses a points-to analysis which
keeps track of the objects a reference o may point to (the points-to set of o). This
information is useful, since it may show that two references cannot be aliased.
We use the results of the points-to analysis to generate preconditions for the
method contracts, as shown in Definition 9, thus transferring information about
the context from JOANA to KeY and increasing the likelihood of a successful
proof.

Definition 9 (Generation of preconditions). Let o be a reference and Po
its points-to set. We generate the following precondition:

∨
o′∈Po

o = o′

4.2 Loop Invariants

In Section 3, we stated that the proof with the theorem prover can cost a lot of
time- and user-effort. The theorem prover needs auxiliary specification like loop
invariants or frame conditions. The method contracts generated as described in
the previous section are necessary for proving a summary edge is unnecessary,
however in the general case they are not sufficient for a successful proof. If the
method contains loops of any kind, the theorem prover needs loop-invariants.
The automatic generation of loop-invariants is an active research field, see for
example [15, 19]. These approaches focus on functional loop-invariants and do
not consider information flow loop-invariants.

The determines clause, described in the previous section, can be used to
specify the allowed information flows of a loop. The determines clause generated
for a loop invariant is similar to the one for method contracts. Because the
variables from the formal-in and formal-out nodes may not directly occur in
the loop some adjustments are necessary. Definition 10 shows what determines
clauses are generated for loops invariants:

Definition 10 (Generation of the determines clause for loop invari-
ants). Let se(ai, ao) be the summary edge to be checked, and let fi and fo be the
formal nodes corresponding to the actual nodes ai and ao. Let Li be a list of all
formal-in nodes f ′

i other than fi of the method belonging to the call site of ai and
ao. Let Vi be the set of all variables in the loop and let Ii be a list of variables
in the method that influence fo. The following determines clause is added to the
loop invariant: determines fo, Vi \by Li, Ii.

Note that the sets Vi and Ii can be constructed by analysing the SDG.

4.3 Heuristics

The order in which the summary edges of in the violation chops are checked
determine the performance of the combined approach. Ideally we would want to
avoid proof attempts of methods that do have an information flow or of very
large methods that would overwhelm the theorem prover (for example the main
method). In order to achieve these goals we developed several heuristics.

A first category of heuristics searches the code for three patterns that are
likely to cause false positives by the SDG-based tool . The first pattern focuses on
the problem of array-handling. The tool considers the array to be one syntactical
construct and ignores the indexes. Thus, for Listing 2, tools like JOANA would
detect an information flow from high to the return value. Thus we consider
methods containing array accesses to be more likely to cause a false positives
and assign a higher priority to them.

The second pattern in Listing 3 considers infeasible path conditions. Through
purely syntactical slicing, it is not possible to detect that there cannot be an
illegal information flow in the example below. The current implementation finds
simple excluding statements, like “x < = 0” and “x > 0”. While the heuristic

itself does not check wheter a method contains infeasible paths it does assign a
higher priority to methods containing complex path conditions.

The second category of heuristics attempts to identify the methods that are
likely to run through the theorem prover automatically. Earlier, we mentioned
that it is difficult to create precise loop-invariants and thus methods without
loops are assigned a higher priority. Furthermore, the method should have as
few as possible references to other classes and methods.

A third category of heuristics tries to identify the methods that, if proven
non-interferent, would bring the greatest benefit to the goal of proving the entire
program non-interferent. We assign a high priority to summary edges which are
bridges in the SDG, i.e. an edge whose removal from the SDG would result in
two unconnected graphs [5].

In the case that there is no bridge, we prefer the method with the highest
number of connections i.e. the most often called method.

5 Evaluation

The evaluation is two-parted. First the combined approach was evaluated based
on examples that generate false positives for SDG-based tools like JOANA. Sec-
ond, we applied the combined on a case study based on a simple e-voting system.
The simple e-voting system was taken from the information flow examples of the
KeY system. Both evaluations were tested on a standard PC (Core i7 2.6GHz,
8GB RAM) and outline the advantages and limitations of the combined approach
compared to the state-of-the-art.

5.1 List of Examples

We considered eleven examples, which cover different program structures and
reasons for false positives. Each of these examples is not solvable by automated
graph based approaches like JOANA.

In Table 1 we have listed the eleven examples. The evaluation is split into
automatic mode and interactive mode. In the automatic mode, an attempt is
made to prove the generated proof obligations automatically. In the interactive
mode, the theorem prover is called for all proof obligations in interactive mode.
In this mode, the user can perform automatic or interactive steps and can add
auxiliary specification.

1 int[] array = new int[2];
2 array[0] = high;
3 array[1] = 3;
4 return array[1];

Listing 2. Array-handling

1 if (x > 0){ y = high; }
2 if (x <= 0){ low = y; }
3 return low;

Listing 3. Excluding statements

The eleven examples are again divided into two groups. First, there are indi-
vidual methods that cause false positives. In the method Identity the high value
is added and subtracted to the low variable such that the low value remains the
same. On a syntactical level there is dependency from high to low but in reality
there is none. In the method Precondition there is an if-condition that can never
be true and the method Excluding Statements contains if-statements that can
not both be true at the same program execution. The example Loop Override
contains a loop which overrides the low value in the last loop execution. For this
example the non-interference loop-invariant was not enough for an automated
proof and further functional information had to be given by the user. The last
simple method Array Access describes the problem described in Section 4.3, it
represents the handling of data structures. The second group consists of pro-
grams that include these problems in different program structures. Based on the
possible SDG, we regard simple flows, branching, nested summary edges and a
combination of it all.

Table 1. List of examples

Automatic Mode Interactive Mode
Program Provable KeY Calls Time Provable KeY Calls

Individual Methods
Identity Yes 1 5 sec. Yes 1
Precondition Yes 1 5 sec. Yes 1
Excluding Statements Yes 1 5 sec. Yes 1
Loop Override No 1 7 sec. Yes 1
Array Access Yes 1 6 sec. Yes 1
Whole Programs
KeY example Yes 1 7 sec. Yes 1
Single Flow Yes 1 6 sec. Yes 1
Branching Yes 2 10 sec. Yes 2
Nested Methods Yes 2 10 sec. Yes 2
Mixture Yes 4 19 sec. Yes 3
Mixture with Loops No 7 20 sec. Yes 5

The example programs are in the scope of 5 to 30 lines of code. They show
that the combined approach can prove programs automatically for which JOANA

would generate false positives and KeY would require a significant amount of user
interaction.

5.2 Case Study - E-Voting

In addition to the outlined examples a small case study has been conducted.
The code used in this case study is attached in Appendix A (Listing 5) and
represents a simple implementation of a voting system. The vote of every voter
is read and sent over a simulated network. If the read vote is not valid, then
0 is sent instead to indicate abstention. The votes itself and whether a vote is
valid is secret. All variables starting with low (e. g. low_sendSuccessful) are
annotated as low and the high_inputstream is annotated as high.

In the first step of our combined approach, we use JOANA to analyze the
program code based on the mentioned annotations. The SDG-based approach
finds 14 violations. All these violations are false positives that occur due to
the over-approximation of the SDG. Specifically, they occur because the con-
dition isValid(high_vote), which is high, controls which assignment to low_
sendSuccessful is executed, so JOANA assumes that this variable depends
on a secret input. In reality, the values assigned to low_sendSuccessful do
not depend on which branch is taken, since they only depend on low_output-
StreamAvailable, which remains constant during a fixed execution. All viola-
tions are different chops from the high input stream high_inputstream to the
different low output streams at different locations, including one exception that
can be thrown when assigning low_numOfVotes to a value.

The combined approach tries to validate these chops bottom up and interrupt
them if possible. First the heuristic looks for smaller methods like sendVote(int
x), inputVote() and isValid(int high_vote) but all three of them are not
secure in regards to our specification and thus cannot be proven secure with the
KeY system. The approach then looks at the top-level method secure_voting().

For the method given in Listing 4 our approach is able to generate most of
the specifications automatically. The JML method contract can be generated
automatically. For the loop-invariant, the current approach is not able to specify
functional properties such as the frame condition or the term that is decreasing
every loop-run. In Listing 4, the boxed commands must be added manually for
a sufficient loop-specification. For the KeY to automatically prove the method
contract two block-contracts are necessary. These are auxiliary specifications for
a group of statements that provide supplementary information to the prover.
For the method secure_voting() the information flow specification has to be
copied manually for both if-blocks as shown in Appendix A.

This specification can then be proven with KeY for the first violation. All
other 13 violations are running through the same top-level method and thus
are satisfied by the same proof. Thus, we showed that our combined approach
can automatically find the causes of false positives by the SDG-based tool and
generate the necessary proof obligations in order to disprove the reported leaks.

1 /*@ normal_behavior
2 @ determines low_outputStream, low_outputStreamAvailable,
3 @ low_NUM_OF_VOTERS, low_numOfVotes,
4 @ low_sendSuccessful \by \itself;
5 @*/
6 void secure_voting() {

7 /*@ loop_invariant 0 <= i && i <= low_NUM_OF _V OT ERS;

8 @ loop_invariant \invariant_for(this);
9 @ determines low_outputStream, low_outputStreamAvailable,

10 @ low_NUM_OF_VOTERS, low_numOfVotes,

11 @ low_sendSuccessful, i \by \itself;

12 @ decreases low_NUM_OF _V OT ERS − i;
13 @*/
14 for (int i = 0; i < low_NUM_OF_VOTERS; i++) {
15 ...
16 }
17 publishVoterParticipation();
18 }

Listing 4. Method secure_voting() with loop invariant

6 Related Work

There exist many different approaches for proving non-interference. In Sec-
tion 2.2 and Section 2.1 we have introduced logic-based and SDG-based ap-
proaches. In addition, we will discuss two other possibilities for proving non-
interference.

6.1 The Hybrid Approach

The hybrid approach by Küsters et al. [16] is the work most related to our
approach. It combines the same type of tools, i.e. an automatic dependency-
graph analysis with a theorem prover, in an attempt to prove non-interference
for a given program with minimized user-effort. The hybrid approach attempts
to show non-interference with the dependency-graph analysis tool first. If the
attempt does not succeed, the user must identify the possible cause of the false
positive and extend the program such that the affected low output is overwritten
with a value that does not depend on the high inputs. The extension is not
allowed to change the state of the original program, it is allowed to use an
extended state and is only allowed to read and overwrite variables from the
original program. The extended program must be shown to be non-interferent
with the dependency-graph analysis tool. In the next step, the theorem prover
is used to show that the extended program is equivalent to the original program
(modulo the extended state).

Similarly to our approach, the SDG-based tool is called first and if it does
not prove non-interference, further action is taken. Unlike our case, the user has
to analyze the program and the output of the SDG-based tool carefully in order
to find out whether the reported flow is a false positive or not. The user then
has to extend the program such that the low output is overwritten with a value
such that the SDG-based tool successfully shows non-interference and then use
the theorem prover to prove that the extended program is equivalent to the
original one. In our approach, the interaction between the SDG-based tool and
the theorem prover is automatic, the user needs to provide functional auxiliary
specification when necessary.

6.2 Path Conditions

Path conditions [13] are another example of how SDG-based tools can be com-
bined with more precise approaches, in this case constraints solvers, to increase
precision. For a violation found by such an analysis, a path condition is a nec-
essary condition that an information flow exists from the source to the sink of
the violation. Path conditions can be computed automatically. In the program
“int y = high; if (x < 0) low = y;”, the path condition for an information flow
from high to low would be x < 0. A constraint solver can then be used to gen-
erate a satisfying assignment for the path condition, which is a potential witness
for an illegal flow. If the path condition is not satisfiable, then one can conclude
that the violation was a false alarm.

Thus SDG-based non-interference analysis can be improved by path con-
ditions. But it is important to state that the generation of path conditions is
non-trivial [13]. The generation and checking of path conditions is not feasible
for huge programs and is therefore not fully included in SDG-based tools like
JOANA.

6.3 Type Systems

A well established technique is the information flow analysis based on security
type systems. Type systems usually use syntactic rules to assign security types,
typically low and high, to expressions and statements of a given program. If the
program is typeable, the non-interference property holds. Examples of such a
security type system are given in [21] or in [23].

The advantages of security type systems is that there is a clear separation
between the rules and the concrete program execution. Furthermore, soundness
proofs and the verification of a program with type systems are very fast. The
disadvantages on the other hand are possible false positives and limitations of
type systems. Most type systems are neither flow-, context- nor object sensitive,
which degrades precision. Also, there exist languages like separation logic for
which there is no known type system available.

7 Conclusion and Future Work

In this paper we introduced a new combined approach to prove non-interference
with less user interaction while keeping the same precision. Our approach com-
bines an automated SDG-based technique with a deductive theorem prover. We
demonstrated that the non-interference properties guaranteed by the two tools
are compatible and, thus, that our approach is sound. The combined approach
has been developed tool-independently, but implemented and evaluated on a
selection of examples as well as a small case study. Although the programs cov-
ered in our evaluation do not exceed 100 lines of code and could – as such – also
be proven without the help of SDG-based IFC, they could – however – also be
embedded in much bigger programs, which – as such – may be clearly too big
for the analysis with a theorem prover. Thereby, our evaluation demonstrates
promising results for complex programs and we are confident that much bigger
programs are in reach.

An extended case study, covering programs too big to be checked by a the-
orem prover alone, is planned. For future work, the heuristics can be improved
by integrating an SMT solver in order to enhance the recognition of excluding
statements or further excluding program structures. The user-effort of the ap-
proach can be further minimized by automating the generation of functional
loop invariants. Furthermore, the approach itself can be extended to also cover
non-sequential programs and declassification.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book: From Theory to Practice, Lecture
Notes in Computer Science, vol. 10001. Springer (2016)

2. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In: Giacobazzi,
R. (ed.) Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy,
August 26-28, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3148,
pp. 100–115. Springer (2004)

3. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Computer Security Foundations Workshop, 2004. Proceedings. 17th IEEE. pp.
100–114. IEEE (2004)

4. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations.
Tech. rep., DTIC Document (1973)

5. Bollobás, B.: Modern graph theory, vol. 184. Springer Science & Business Media
(2013)

6. Darvas, Á., Hähnle, R., Sands, D.: A Theorem Proving Approach to Analysis of
Secure Information Flow, pp. 193–209. Springer (2005)

7. van Delft, B.: Abstraction, objects and information flow analysis. Ph.D. thesis,
Chalmers University of Technology, Goeteborg, Sweden (2011)

8. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

9. Giffhorn, D.: Slicing of Concurrent Programs and its Application to Information
Flow Control. Ph.D. thesis, Karlsruher Institut für Technologie, Fakultät für In-
formatik (2012)

10. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proceedings of
the 1984 IEEE Symposium on Security and Privacy, Oakland, California, USA,
April 29 - May 2, 1984. pp. 75–87. IEEE Computer Society (1984)

11. Graf, J., Hecker, M., Mohr, M.: Using joana for information flow control in Java
programs-a practical guide. In: Software Engineering (Workshops). pp. 123–138
(2013)

12. Hammer, C.: Experiences with pdg-based IFC. In: Massacci, F., Wallach, D.S.,
Zannone, N. (eds.) Engineering Secure Software and Systems, Second International
Symposium, ESSoS 2010, Pisa, Italy, February 3-4, 2010. Proceedings. Lecture
Notes in Computer Science, vol. 5965, pp. 44–60. Springer (2010)

13. Hammer, C., Krinke, J., Snelting, G.: Information flow control for Java based
on path conditions in dependence graphs. In: IEEE International Symposium on
Secure Software Engineering. pp. 87–96 (2006)

14. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International Jour-
nal of Information Security 8(6), 399–422 (2009)

15. Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik (2006)

16. Küsters, R., Truderung, T., Beckert, B., Bruns, D., Kirsten, M., Mohr, M.: A
hybrid approach for proving noninterference of Java programs. Proceedings of the
Computer Security Foundations Workshop 2015-Septe, 305–319 (2015)

17. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for java. ACM SIGSOFT Software Engineering
Notes 31(3), 1–38 (2006)

18. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000)

19. Rodríguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. Journal of Symbolic Computation 42(4), 443–476 (2007)

20. Ryan, P.Y.A., Schneider, S.A.: Process algebra and non-interference. Computer
Security Foundations Workshop, 1999. Proceedings of the 12th IEEE pp. 214–227
(1999)

21. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on selected areas in communications 21(1), 5–19 (2003)

22. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java pro-
grams without approximations. In: International Conference on Formal Verification
of Object-Oriented Software. pp. 232–249. Springer (2011)

23. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
Journal of computer security 4(2-3), 167–187 (1996)

24. Wasserrab, D.: From Formal Semantics to Verified Slicing - A Modular Frame-
work with Applications in Language Based Security. Ph.D. thesis, Karlsruher In-
stitut für Technologie, Fakultät für Informatik (Oct 2010), http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000020678

A Source Code for E-Voting Case Study

1 /**
2 * Information flow example.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020678
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020678

3 * The example is a toy implementation of a voting process. The vote of
4 * every voter is read and sent over a not further modelled network. If
5 * the read vote is not valid, then 0 is sent instead to indicate
6 * abstention. The votes itself and whether a vote is valid is secret.
7 * At the end the participation is output.
8 * Without the optimizations described in the FM-Paper the verification
9 * of the method secure_voting() with the help of self-composition is

10 * very expensive or even infeasible.
11 *
12 * @author Christoph Scheben
13 */
14 public class Voter {
15 public static int low_outputStream;
16 public static boolean low_outputStreamAvailable;
17 private static int high_inputStream;
18

19 public static final int low_NUM_OF_VOTERS = 763;
20 public static int low_numOfVotes;
21 public boolean low_sendSuccessful;
22

23 private boolean high_voteValid;
24

25 public static void main(String[] args) {
26 Voter v = new Voter();
27 v.secure_voting();
28 }
29

30 /*@ normal_behavior
31 @ determines low_outputStream, low_outputStreamAvailable,
32 @ low_NUM_OF_VOTERS, low_numOfVotes,
33 @ low_sendSuccessful \by \itself;
34 @*/
35 void secure_voting() {
36 /*@ loop_invariant 0 <= i && i <= low_NUM_OF_VOTERS
37 @ && \invariant_for(this);
38 @ determines low_outputStream, low_outputStreamAvailable,
39 @ low_NUM_OF_VOTERS, low_numOfVotes,
40 @ low_sendSuccessful, i \by \itself;
41 @ decreases low_NUM_OF_VOTERS - i;
42 @*/
43 for (int i = 0; i < low_NUM_OF_VOTERS; i++) {
44 int high_vote = inputVote();
45 /*@ normal_behavior
46 @ determines low_outputStream,
47 @ low_outputStreamAvailable,
48 @ low_NUM_OF_VOTERS,
49 @ low_numOfVotes,
50 @ low_sendSuccessful \by \itself;
51 @*/
52 {

53 if (isValid(high_vote)) {
54 high_voteValid = true;
55 low_sendSuccessful = sendVote(high_vote);
56 } else {
57 high_voteValid = false;
58 low_sendSuccessful = sendVote(0);
59 }
60 }
61 /*@ normal_behavior
62 @ determines low_outputStream,
63 @ low_outputStreamAvailable,
64 @ low_NUM_OF_VOTERS, low_numOfVotes,
65 @ low_sendSuccessful \by \itself;
66 @*/
67 {
68 low_numOfVotes =
69 (low_sendSuccessful ?
70 low_numOfVotes + 1 : low_numOfVotes);
71 }
72 }
73 publishVoterParticipation();
74 }
75

76 int inputVote() {
77 return high_inputStream;
78 }
79

80 boolean sendVote(int x) {
81 if (low_outputStreamAvailable) {
82 // encrypt and send over some channel
83 // (not further modeled here)
84 return true;
85 } else {
86 return false;
87 }
88 }
89

90 boolean isValid(int high_vote) {
91 // vote has to be in range 1..255
92 return 0 < high_vote && high_vote <= 255;
93 }
94

95 void publishVoterParticipation() {
96 low_outputStream =
97 low_numOfVotes * 100 / low_NUM_OF_VOTERS;
98 }
99 }

Listing 5. Source Code

A Linguistic Framework for Firewall

Decompilation and Analysis∗

Extended Abstract

Chiara Bodei1, Pierpaolo Degano1, Riccardo Focardi2,
Letterio Galletta1, Mauro Tempesta2, and Lorenzo Veronese2

1 Dipartimento di Informatica, Università di Pisa, Italy
{chiara,degano,galletta}@di.unipi.it

2 DAIS, Università Ca’ Foscari Venezia, Italy
{focardi,tempesta}@unive.it, 852058@stud.unive.it

Abstract

Configuring and maintaining firewall configurations is notoriously complex. Policies are written in low-

level, platform-specific languages where firewall rules are inspected and enforced along nontrivial control

ow paths. Moreover, firewalls are tightly related to Network Address Translation since filters must be

implemented with addresses translations in mind, further complicating the task of administrators. Here

we propose a way of decompiling a real firewall configuration into an abstract declarative specification.

We define a linguistic framework parametric with respect to the rule inspection control flow and that

provides the typical features of real languages. Widely deployed firewalls used in Linux/Unix can be

represented in our framework. Given a firewall configuration expressed in this way, we define a logical

predicate that characterizes the accepted packets and their possible translations. We build a tool

based on this logical characterization that uses the Z3 solver to produce a declarative specification that

succinctly represents the firewall behavior. Tests on real configurations show our approach effective:

the tool processes our university department policy in about 26 minutes, while subsets of the policy

for simple subnets or specific hosts are synthesized in a matter of seconds.

1 Introduction

Firewalls are one of the standard mechanisms for protecting computers and network data but,
as any other security mechanism, they become useless when improperly configured. Setting up
a firewall can be a challenging task also for skilled network administrators, since configurations
typically contain a large number of rules and it is often hard to figure out their impact in terms
of firewall behavior. In addition, configurations must be maintained to reflect the updates of
the desired security policies. Since rules may also interact with each other, incautious modifi-
cations may unexpectedly impact on the overall behavior of the firewall, with possible severe
consequences on the connectivity or the security of the network.

Configuration languages are variegated and rather complex, accounting for low level details
and supporting nontrivial control flow constructs, such as jumps between rulesets. The way
firewall configurations are enforced typically depends on how packets are processed by the net-
work stack of the operating system and needs to take into account Network Address Translation
(NAT), the indispensable mechanism for translating addresses and performing port redirection.

Over the past few years, there has been a growing interest in high level languages that allow
programming the network as a whole, e.g., the Software Defined Network (SDN) paradigm [21].

∗Work partially supported by FilieraSicura, a project funded by Cisco Systems Inc. and Leonardo SpA.

A Linguistic Framework for Firewall Decompilation and Analysis Bodei et al.

Although SDN is spreading fast, it will take time before the “old” technology is dismissed, thus
we can expect to still have to face a variety of configuration languages in the next years.

The literature provides many approaches for simplifying and analyzing firewall configura-
tions. Many of them adopt a top-down approach, proposing ways to specify abstract policies
that are compiled into real systems [1, 6, 10, 2, 9, 4, 23] or providing tools for aiding firewall
management and spotting misconfigurations [1, 3, 31, 11, 20, 29, 24, 12, 15, 7, 8, 16]. Other
proposals (like ours) follow a bottom-up approach, by extracting the model of the access control
policy from the firewall configuration files [5, 30, 19, 14, 17, 13].

We take here the bottom-up alternative, and we study the problem of “decompiling” a real
firewall configuration into an abstract declarative specification with the aim of extracting its
meaning. To the best of our knowledge, this is the first proposal to synthesize a declarative
specification starting from actual policies. A declarative version of the configuration makes
it easier for administrators to check whether the firewall is implementing the intended secu-
rity policy. Moreover, by comparing two specifications one can detect the differences between
configurations and verify that updates have the desired effect on the firewall behavior. Decom-
pilation also paves the way to cross-platform re-compilation into a different firewall system.
This is particularly useful when migrating to a different infrastructure or to a new network
configuration paradigm such as SDN.

2 Contribution

Starting from the most used firewall tools in Linux and Unix [27, 28, 26, 22], we have identified
the fundamental ingredients of a typical firewall configuration. We exploit these ingredients to
define a generic core language for expressing configurations with an abstract notion of packets,
rules and state. Our language supports NAT, invocations to rulesets and stateful filtering, i.e.,
packet filtering that depends on the history of the previously received packets.

We endow the language with an operational semantics that specifies how packets are dealt
with by the firewall in a given state, which is taken as a parameter. In addition, we introduce the
notion of control diagram, which abstractly represents the rule inspection control flow related
to the steps performed on the packets passing through the host.

We can encode a real firewall policy language in our framework by simply instantiating the
state and the control diagram, up to minor syntactic transformations. The encoded language
inherits our operational semantics and all of its properties. Interestingly, representing different
languages in the same linguistic framework allows us to compare them and highlights subtle
differences of their rule inspection control flow. We model the firewall tools in Linux/Unix
mentioned above in our framework, showing it is sufficiently general and expressive. To the
best of our knowledge, we provide for the first time a uniform, formal semantics to these tools.

Given a policy expressed in our framework, we transform it by unfolding all its control flow
actions. We have formally proved that the transformation preserves the behavior of the policy.
The unfolded policy is used as a starting point to synthesize a logical predicate that determines
which are the packets accepted by the firewall policy and how they are possibly transformed
due to NAT rules.

We have developed a tool that, given a configuration and a rule inspection control flow,
computes the corresponding predicate and uses the Z3 solver [18] to synthesize a declarative
firewall specification expressed with Mignis rules [1].

Our tool supports queries that can be used to verify properties of interest in a given policy,
as well as to compare policies specified in different languages, once encoded in our framework.
As a matter of fact, we used our tool to check whether or not a certain address is reachable from

2

A Linguistic Framework for Firewall Decompilation and Analysis Bodei et al.

another one (recall that that addresses can be translated); whether a bidirectional communi-
cation is enabled; whether a policy implies another or whether they are equivalent, possibly
leading to simplifications. We also computed the differences between non equivalent policies,
so helping during maintenance operations. It is also worth mentioning that all the results of
the above queries are displayed in a simple, human-readable form.

Tests on real configurations show the effectiveness of our approach: our tool can process
the 175 ACL policies of the Stanford University backbone network [25] in less than 80 seconds.
Also, our tool synthesizes the entire iptables policy of the DAIS department of the University
of Venezia, which includes NAT rules and user-defined chains, in 26 minutes; fragments of the
policy relative to simple subnets or specific hosts can be extracted in a few seconds.

References

[1] Pedro Adão, Claudio Bozzato, G. Dei Rossi, Riccardo Focardi, and Flaminia L. Luccio. Mignis:
A semantic based tool for firewall configuration. In IEEE 27th Computer Security Foundations
Symposium, CSF 2014, pages 351–365, 2014.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and D. Walker.
NetKAT: Semantic foundations for networks. In Proc. of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2014). ACM, 2014.

[3] Y. Bartal, A. Mayer, Nissim, and A. Wool: Firmato. A Novel Firewall Management Toolkit. ACM
Transactions on Computer Systems, 22(4):1237–1251, 2002.

[4] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and Avishai Wool. Firmato: A novel firewall manage-
ment toolkit. ACM Trans. Comput. Syst., 22(4):381–420, 2004.

[5] F. Cuppens, N. Cuppens-Boulahia, J. Garćıa-Alfaro, T. Moataz, and X. Rimasson. Handling state-
ful firewall anomalies. In SEC, volume 376 of IFIP Advances in Information and Communication
Technology, pages 174–186. Springer, 2012.

[6] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège. A formal approach to specify and
deploy a network security policy. In Formal Aspects in Security and Trust (FAST’04), pages
203–218, 2004.

[7] Firestarter. http://www.fs-security.com/, 2007.

[8] Firewall builder. http://www.fwbuilder.org/, 2012.

[9] Simon N. Foley and Ultan Neville. A firewall algebra for openstack. In 2015 IEEE Conference on
Communications and Network Security, CNS 2015, pages 541–549, 2015.

[10] M.G. Gouda and A.X. Liu. Structured firewall design. Computer Networks, 51(4):1106–1120,
2007.

[11] High Level Firewall Language. http://www.hlfl.org, 2003.

[12] IPtables made easy, Shorewall. http://www.shorewall.net/, 2014.

[13] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie Kaufman. Automated analysis
and debugging of network connectivity policies. Technical report, Microsoft, 2014.

[14] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis: Static checking
for networks. In Proceedings of the 9th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012, pages 113–126, 2012.

[15] KMyFirewall. http://www.kmyfirewall.org/, 2008.

[16] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George Varghese.
Checking beliefs in dynamic networks. In 12th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 15, pages 499–512. USENIX Association, 2015.

[17] Alain J. Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis engine. In 2000 IEEE
Symposium on Security and Privacy, USA, pages 177–187, 2000.

3

http://www.fs-security.com/
http://www.fwbuilder.org/
http://www.hlfl.org
http://www.shorewall.net/
http://www.kmyfirewall.org/

A Linguistic Framework for Firewall Decompilation and Analysis Bodei et al.

[18] Microsoft Research. Z3 theorem prover. https://github.com/Z3Prover/z3.

[19] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishna-
murthi. The margrave tool for firewall analysis. In Uncovering the Secrets of System Administra-
tion: Proceedings of the 24th Large Installation System Administration Conference, LISA 2010,
2010.

[20] NeTSPoC: A Network Security Policy Compiler. http://netspoc.berlios.de, 2011.

[21] Open Networking Foundation. Software-Defined Networking (SDN) Definition. https://www.

opennetworking.org/sdn-resources/sdn-definition.

[22] Packet Filter (PF). https://www.openbsd.org/faq/pf/.

[23] S. Pozo, R. Ceballos, and R. M. Gasca. Afpl, an abstract language model for firewall acls. In Proc.
of the international conference on Computational Science and Its Applications, Part II, ICCSA
’08, pages 468–483. Springer-Verlag, 2008.

[24] Pyroman. http://pyroman.alioth.debian.org/, 2011.

[25] Stanford University Backbone Network configuration ruleset. https://bitbucket.org/peymank/

hassel-public/.

[26] The IPFW Firewall. https://www.freebsd.org/doc/handbook/firewalls-ipfw.html.

[27] The Netfilter Project. https://www.netfilter.org/.

[28] The Nftables Project. https://netfilter.org/projects/nftables/.

[29] Uncomplicated Firewall. https://help.ubuntu.com/community/UFW.

[30] Lihua Yuan, Jianning Mai, Zhendong Su, Hao Chen, Chen-Nee Chuah, and Prasant Mohapatra.
FIREMAN: A toolkit for firewall modeling and analysis. In 2006 IEEE Symposium on Security
and Privacy (S&P 2006), USA, pages 199–213, 2006.

[31] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher. Specifications of a high-level
conflict-free firewall policy language for multi-domain networks. In Proc. of ACM Symposium on
Access Control Models and Technologies (SACMAT 2007). ACM, 2007.

4

https://github.com/Z3Prover/z3
http://netspoc.berlios.de
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.openbsd.org/faq/pf/
http://pyroman.alioth.debian.org/
https://bitbucket.org/peymank/hassel-public/
https://bitbucket.org/peymank/hassel-public/
 https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.netfilter.org/
https://netfilter.org/projects/nftables/
https://help.ubuntu.com/community/UFW

A Runtime Monitoring System to Secure Browser
Extensions

Raúl Pardo1, Pablo Picazo-Sanchez1, Gerardo Schneider1, and Juan Tapiador2

1 Dept. of Computer Science and Engineering,
Chalmers — University of Gothenburg, Sweden.

pardo@chalmers.se, pablop@chalmers.se, gersch@chalmers.se
2 Dept. of Computer Science, Carlos III University of Madrid

28911 Leganes, Madrid, Spain.
jestevez@inf.uc3m.es

1 Problem

Web browsers are applications originally created to surf over the Internet in a friendly
way. Nowadays these browsers have turned into a richer software where, apart from
surfing the web, users are provided with a vast variety of small applications, called
browsers extensions, that are not maintained by the web browsers. Those browser ex-
tensions are usually developed by external developers and directly interact either with
the web content or with the users.

Browser extensions considerably increase the functionality of the browser. For in-
stance, using a well known translate browser extension, users can have any web page
translated to their preferred language; telephone numbers can be remarked in the web
page so that users can click on them and automatically open a desktop application to
make that call or browser extensions that block the advertisement that some sites insert
in the HTML.

However, the inclusion of these third parties applications in the web browsers poses
new security and privacy challenges in terms of malware [4, 5, 3], advertisement [8,
9, 2, 1] or disclosing personal information about the user [6], e.g., getting access to
browser history or reading another site’s password.

Nevertheless, despite working properly, an extension can have undesirable conse-
quences. Imagine that Alice, who is not a Swedish speaker, visits her bank account
website to check her current balance. She gets a HTML content with the latest transac-
tions written in Swedish. Alice decides to use an extension to translate from Swedish
to English and confirm that all transactions are correct. To perform this task the exten-
sion sends the whole HTML to an external server so that it is automatically translated.
Finally, the server sends back the website completely in English. One might argue that
this is an undesirable behaviour, since sensitive information— which was not relevant
for the task that Alice wanted to perform—was disclosed. In this abstract, we describe
preliminary ideas on how to effectively prevent leaks of this kind.

According to the official browser extension developer guidelines3, a browser exten-
sion is an application composed of a manifest file, one or more HTML file(s) and zero

3 https://developer.chrome.com/extensions

or more JavaScript. A manifest file is where the information about the extension, such
as the capabilities that the extension might use (Content Security Policy (CSP)), is. The
HTML files define the User Interface (UI) and it is the link between the extension and
the user. Finally, JavaScript files contain the logic and how the extension behaves.

Conforming to the interaction of the extensions with the browser, they can be clas-
sified in two different groups: persistent or event. Both types are based on HTML and
Javascript files whose content can be accessible indistinctly. However, persistent exten-
sions are always running, whereas event extensions are opened and closes as they are
needed.

Content script is an additional functionality that browser extensions can have. A
content script is a Javascript file that can interact with the web content and alter it
Interactive extensions. It can be used together with both persistent and event extensions.
Communication between the content script and the extension can only be done by using
specific calls to the API.

Ext1

ExtN

Ext2

Ext3

HTML1

HTML2

HTML3

HTML

Browser Extension Engine

HTML’

Fig. 1: Browser Extension Engine

Browser extensions are typically executed in a sequential manner. Figure 1 shows
the execution order together with their inputs and outputs. Note that, in the figure, Ext1
takes the original HTML file, performs some actions, and passes the resulting HTML1

to Ext2. The actions that extensions are allowed to perform can be controlled by means
of CSPs. Roughly speaking, CSPs act as a filter to allow extensions to load and execute
external resources.

2 Our Approach

Consider again Alice’s example in the introduction. In order to avoid having her current
balance sent to the translation server she can activate a policy that says: “Extensions
cannot send web pages to the internet”. This policy would make the Translate extension
unusable, since it relies on external servers to perform translations. Moreover, Alice

2

does not want to forbid the extension to send any kind of information. She only wants
to prevent the extension to send the balance in her bank account. In particular, a better
policy would be: “When I visit my bank website do not send any numerical digits to
the internet”. Note that the previous policy includes a condition that depends on Alice’s
visiting her bank website.

In [7] Pardo et al. introduced policy automata, a formalism to describe policies
which depend on the state of the system and events, also known as evolving policies. It
was applied in the context of social networks. Nevertheless, in this abstract we propose
a similar approach to tackle the problems in browser extensions we have described.

Policy automata consists of a set of states, which indicate the policy (P) that must be
activated in the system, and transitions between states. Each transition is labelled with
an event, a boolean condition and an action, which we denote e/c/a. An event e can be
any event that is detectable in the browser. For instance, a user’s visiting a website or
an extension sending information to an external server. The condition c is any condition
regarding the state of the browser. For example, checking whether the tab is in incognito
mode or certain extension is enabled. Finally, the action a can be an arbitrary program,
which would be executed as a consequence of triggering the transition.

Example 1. Consider the policy we mentioned earlier: “When I visit my bank web-
site do not send any numerical digits to the Internet”. It can be modelled using policy
automata as follows:

PHTMLstart//

s0

PHTML−NumericalDigits

s1
start Translate/https://mybank.com/* 6∈ current tabs/

start Translate/https://mybank.com/* ∈ current tabs/

When a user opens the browser, the automaton is in the initial state s0. The elements
inside the states represent policies that must be enforced. In s0 the policy PHTML rep-
resents that extensions can access all the HTML content that the browser has rendered.
The transition from s0 to s1 models that, when the translation extension is activated, if
mybank.com is opened in a tab then the automaton changes to state s1. In state s1 the
policy PHTML−NumericalDigits means that extensions can get the whole HTML except
for numeric values. Finally, if the automaton is in state s1 and the translation starts, but
the tab mybank.com is not present then the automaton enables again the policy PHTML.
When an event occurs but the condition is not satisfied the automaton remains in the
same state. ut

Note that, in the previous example, it is possible for another malicious extension to
modify the numerical digits of the HTML so that the information is sent to the trans-
lation server. This is known as collusion attack and protecting against this type attacks
would require a more sophisticated policy. Policy automata can also be used to pre-
vent instances of this type of attacks. The sequence of events which occurs during the
collusion can be specified in the automaton, and the required policies can be activated.

Policy automata define the behaviour of monitors that will run in parallel together
with the web browser. The monitors will be in charge of activating and deactivating the

3

static policies according to the specification in the automaton. Policy automata can be
automatically compiled to Java monitors using LARVA [7]. However, we are still evalu-
ating other approaches to directly implementing the monitors that are more targeted for
our setting.

3 Discussion

We have identified browser extensions as a potential source of personal information
leakage. We are currently looking into policies that can be enforceable using our tech-
nique. In particular, we are focusing in the implementation of an extension or a plug-in
for the web browser Chromium. The events and information that can accessed as well
as the (static) policies that can be enforced in Chromium will determine the type of
policies that we can effectively implement.

Related Work. In [4] authors proposed an application that classifies extensions ac-
cording to some parameters (developer reputation, code base or behaviour) as malware
and they were automatically removed from the Chrome Store. A similar work named
Hulk was proposed in [5] were extensions were classified by identifying suspicious be-
haviours. In our proposal, we go one step further and not only do we detect whether
a browser extension is or is not disclosing sensitive information about the user but we
also create a mechanism to avoid that sensitive information — without skipping the
execution of the browser extension which is leaking our data — will be sent.

Acknowledgements This research has been supported by the Swedish funding agency
SSF under the grant Data Driven Secure Business Intelligence and the Swedish Re-
search Council (Vetenskapsrådet) under grant Nr. 2015-04154 (PolUser: Rich User-
Controlled Privacy Policies).

4

Bibliography

[1] Sajjad Arshad, Amin Kharraz, and William Robertson. Identifying Extension-Based
Ad Injection via Fine-Grained Web Content Provenance, pages 415–436. Springer
International Publishing, Cham, 2016.

[2] Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, and Christo Wilson.
Tracing information flows between ad exchanges using retargeted ads. In 25th
USENIX Security Symposium (USENIX Security 16), pages 481–496, Austin, TX,
2016. USENIX Association.

[3] Stefan Heule, Devon Rifkin, Alejandro Russo, and Deian Stefan. The most dan-
gerous code in the browser. In 15th Workshop on Hot Topics in Operating Systems
(HotOS XV), Kartause Ittingen, Switzerland, 2015. USENIX Association.

[4] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis Mavrommatis, Niels
Provos, Moheeb Abu Rajab, and Kurt Thomas. Trends and lessons from three years
fighting malicious extensions. In Proceedings of the 24th USENIX Conference on
Security Symposium, SEC’15, pages 579–593, 2015.

[5] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Giovanni
Vigna, and Vern Paxson. Hulk: Eliciting malicious behavior in browser extensions.
In Proceedings of the 23rd USENIX Conference on Security Symposium, SEC’14,
pages 641–654, 2014.

[6] Lei Liu, Xinwen Zhang, Vuclip Inc, Guanhua Yan, and Songqing Chen. Chrome ex-
tensions: Threat analysis and countermeasures. In In 19th Network and Distributed
System Security Symposium (NDSS ’12, 2012.

[7] Raúl Pardo, Christian Colombo, Gordon J. Pace, and Gerardo Schneider. An
automata-based approach to evolving privacy policies for social networks. In Run-
time Verification: 16th International Conference, RV 2016, Madrid, Spain, Septem-
ber 23–30, 2016, Proceedings, pages 285–301, 2016.

[8] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros
Kapravelos, Damon Mccoy, Antonio Nappa, Vern Paxson, Paul Pearce, Niels
Provos, and Moheeb Abu Rajab. Ad injection at scale: Assessing deceptive ad-
vertisement modifications. In S&P 2015, pages 151–167, 2015.

[9] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weinsberg, Anmol Sheth, Roberto
Perdisci, and Wenke Lee. Understanding malvertising through ad-injecting browser
extensions. In Proceedings of the 24th International Conference on World Wide
Web, WWW ’15, pages 1286–1295, 2015.

Making Decryption Accountable

Mark D. Ryan

University of Birmingham

Abstract. Decryption is accountable if the users that create ciphertexts
can gain information about the circumstances of the decryptions that
are later obtained. We describe a protocol that forces decryptors to cre-
ate such information. The information can’t be discarded or suppressed
without detection. The protocol relies on a trusted hardware device. We
describe some applications.

1 Introduction

When I was a teenager, I wanted to be able to go out in the evening and not
have to tell my parents where I was going. My parents were understanding about
this wish for privacy, but explained that if for some reason I didn’t come back
at the expected time, they needed to have some clues to give to the police about
where I had been. So we came to the following compromise: I would leave a
sealed envelope explaining my activities. This would enable them to search for
me if they needed to, but if I came back on time I could retrieve the envelope
and see that it had not been opened.

To have such a protocol in the digital world, we would need some way of
knowing whether someone who has all the needed material to perform a decryp-
tion has actually performed it. More generally, we need a way to make decryption
key holders accountable in some way for their use of the key. This accountability
might take many forms. For example, some applications might need fine-grained
accounts of exactly what was decrypted, and when, while in other cases we may
be interested only in volumes, frequencies, or patterns of decryption.

In this paper, we informally describe the requirements for making decryptions
accountable (section 2), and devise a protocol based on trusted hardware that
achieves them (section 3). We describe a few applications at a very high level
(section 4).

2 The requirements

We formulate the requirements as follows:

– Users U1, . . . create ciphertexts using a public encryption key ek.
– Decrypting agent Y is capable of decrypting the ciphertexts without any

help from the users.

– When Y decrypts ciphertexts, it unavoidably creates evidence e that is acces-
sible to the users. The evidence cannot be suppressed or discarded without
detection.

– By examining e, the users gain some information about the nature of the
decryptions being performed.

Here, the granularity of e is left open. We will see some examples in section 3.2.

3 Protocol design

Intuitively, if Y has a ciphertext and a decryption key, it is impossible to detect
whether she applies the key to to ciphertext or not. This implies that the key has
to be guarded by some kind of hardware device D that controls its use. In this
section, we propose a simple generic design that achieves some of the desired
functionality. The hardware device D embodies the secret decryption key dk
corresponding to ek. The secret decryption key dk never leaves the device.

In order to make the evidence e persistent, we assume a log L. The log is
organised as an append-only Merkle tree as used in, for example, certificate
transparency [1]. The log maintainer publishes the root tree hash H of L, and
is capable of generating two kinds of proof about the log’s behaviour:

– A proof of presence of some data in the log. More precisely, given some data d
and a root tree hash H of the log, the log maintainer can produce a compact
proof that d is indeed in the log represented by H.

– A proof of extension, that is, a proof that the log is maintained append-only.
More precisely, given a previous root tree hash H ′ and the current one H,
the log maintainer can produce a proof that the log represented by H is an
append-only extension of the log represented by H ′.

(Details of these proofs can be found in e.g. [8].) This means that the maintainer
of L is not required to be trusted to maintain the log correctly. It can give proofs
about its behaviour.

3.1 Performing decryptions

The decrypting agent Y uses the device D to perform decryptions. The device
will perform decryptions only if it has a proof that the decryption request has
been entered into the provably-append-only log.

The device maintains a variable containing its record of the most recent root
tree hash H that it has seen of the log L. On receiving a set R of decryption
requests, the decrypting agent performs the following actions:

– Obtain from the device its last-seen root tree hash H.
– Enter the set R of decryption requests into the log.
– Obtain the current root tree hash H ′ of the log.
– Obtain from the log a proof π of presence of R in the log with RTH H ′.

– Obtain from the log a proof ρ that the log with RTH H ′ is an append-only
extension of the log with RTH H.

The decrypting agent presents (R,H ′, π, ρ) to the device. The device verifies the
proofs, and if they are valid, it performs the requested decryptions R. It updates
its record H of the last-seen root tree hash with H ′.

3.2 Evidence

Evidence about decryptions is obtained by inspecting the log, which contains
the decryption requests. There are many ways that this could be organised. We
look at two examples:

Example 1: the log contains a hash of the decrypted ciphertext. This allows
a user U to detect if ciphertexts she produced have been decrypted.

Example 2: the log contains a unique value representing the decrypted ci-
phertext, but the value cannot be tied to a particular ciphertext (for example,
the value could be the hash of a re-encryption [7]). This allows users to see the
number of ciphertexts decrypted, but not which particular ones.

3.3 Currency

As described so far, the protocol is insecure because the device D could be
tracking a version of the log which is different from the version that the users
track. Although both the device and users verify proofs that the log is main-
tained append-only, there is no guarantee that it is the same version log. The
log maintainer can bifurcate the log, maintaining each branch independently but
append-only.

Gossip protocols of the kind proposed for solving this problem for certificate
transparency [5] are insufficient here, because the device D is not capable of
reliably participating in them.

To ensure that users track the same version of the log that D tracks, we
introduce an additional protocol of D. In this second protocol, D accepts as
input a verifiably current value v. The value v cannot be predicted in advance,
but is verifiable by anyone. D outputs its signature Signsk(v,H) on the value v
and its current stored root tree hash H of the log. Thus, we require that D has
an additional secret key sk for signing. The corresponding verification key vk is
published. Like dk, the key sk never leaves the device.

There are several ways in which the verifiably current value v can be con-
structed. For example, v can be the hash of a data structure containing nonces
v1, . . ., each one produced by one of the users U1, Alternatively, v could be
the concatenation of the date and the day’s closing value of an international
stock exchange.

Periodically, the current value of H tracked by the device is published. By
means of the proofs of extension, users can verify that it is consistent with their
view of the log.

3.4 The trusted hardware device

The protocol described relies on having a trusted hardware device D that per-
forms a specific set of operations that are recapped here. The aim is to keep the
functionality of D as small and as simple as possible, while still allowing it to
support the variety of applications mentioned below (section 4). In summary,
D stores persistent keys dk (decryption) and sk (signing), and the current root
tree hash H of a log. It offers two services:

Decryption. It accepts a tuple (R,H ′, π, ρ) as described in section 3.1. It ver-
ifies the proof π that R is present in the log with root tree hash (rth) H ′,
and the proof ρ that H ′ is the rth of a log that is an extension of the log
of which its current rth is the H stored in D. (These verifications consist
of some hash calculations and comparisons.) If the verifications succeed, it
performs the decryptions R, and replaces its stored H with H ′.

Attestation. It accepts a value v, and returns Signsk(v,H) on the value v and
its current stored rth H.

4 Applications

Most electronic voting protocols begin with voting clients that encrypt votes
with a public key, and end with the result being decrypted by a trustworthy
party (or, possibly, a set of trustworthy parties each of which holds a share
of the decryption key). The decrypting agents are trusted only to decrypt the
result, and not the votes of individual voters. A protocol to make decryption
accountable could help make this verifiable.

Finance is an area in which privacy and accountability are often required to
be balanced. For this reason, the designers of Zerocash have introduced mecha-
nisms which allow selective user tracing and coin tracing in a cryptocurrency [6].
Making decryptions accountable is another technique which could help obtain
the desired combination of privacy and accountability.

The UK government has recently passed legislation allowing government
agencies to access information about the communications of private citizens [2],
in order to solve crimes. In an effort to provide some kind of accountability,
there are stipulations in the law to ensure that the provisions of the act are used
in ways that are necessary and proportionate to the crimes being addressed. A
protocol that makes decryption accountable could make verifiable the quantity
and perhaps the nature of decryptions [7].

Making decryptions accountable potentially addresses the problem of hav-
ing to trust escrow holders, for example in identity-based encryption [4] and
elsewhere [3].

5 Conclusion

There seems to be a variety of circumstances in which making decryption ac-
countable is attractive. This paper proposes the design of trusted hardware which
would assist in this process.

The idea of the design is that the decrypting agent has no way to decrypt
data without leaving evidence in the log, unless it can break the hardware device
D. This raises the question of who manufactures the device, and how the relying
parties (both users U1 . . . and decrypting agents Y) can be assured that it will
behave as specified. It depends on the sensitivity of the information being pro-
cessed. One idea is that it is jointly manufactured by an international coalition
of companies with a reputation they wish to maintain.

References

1. Certificate transparency. Available: www.certificate-transparency.org, 2007.
2. Investigatory Powers Act. Available: www.legislation.gov.uk/ukpga/2016/25/

contents/enacted, 2016.
3. Harold Abelson, Ross Anderson, Steven M Bellovin, Josh Benaloh, Matt Blaze,

Whitfield Diffie, John Gilmore, Matthew Green, Susan Landau, Peter G Neumann,
et al. Keys under doormats: mandating insecurity by requiring government access
to all data and communications. Journal of Cybersecurity, 2015.

4. Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In
Annual International Cryptology Conference, pages 213–229, 2001.

5. Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben Laurie, and Eran Messeri.
Efficient gossip protocols for verifying the consistency of certificate logs. In IEEE
Conference on Communications and Network Security (CNS), pages 415–423, 2015.

6. Christina Garman, Matthew Green, and Ian Miers. Accountable privacy for decen-
tralized anonymous payments. IACR Cryptology ePrint Archive, 2016:61, 2016.

7. Jia Liu, Mark D. Ryan and Liqun Chen. Balancing Societal Security and Individual
Privacy: Accountable Escrow System. In CSF, 2014.

8. Mark D. Ryan. Enhanced certificate transparency and end-to-end encrypted mail.
In Network and Distributed System Security (NDSS), 2014.

Submitted to:
HotSpot 2017 – 5th Workshop on Hot Issues in Security Principles and Trust

c© K. Severinsen & C. Johansen & S. Bursuc
This work is licensed under the
Creative Commons Attribution License.

Securing the End-points of the Signal Protocol
using Intel SGX based Containers

Kristoffer Severinsen Christian Johansen∗

Dept. of Informatics, University of Oslo

{kristmse,cristi}@ifi.uio.no

Sergiu Bursuc
University of Bristol, UK

sbursuc@gmail.com

This paper presents ongoing work on securing the end-points in the Signal messaging protocol using
the new hardware security technology provided by Intel Software Guard Extensions (SGX). Signal
is a recent secure messaging protocol, descendant from the classical off-the-record protocol, which
has lately become popular partly due to the Snowden revelations. Signal, or variants of it, are now
implemented, or under way of being implemented, in various major chat products, like from Face-
book, WhatsApp, Google. Formal verification of Signal is interesting as well, e.g., two papers being
presented at the 2017 European Symposium on Security and Privacy.

However, when studying communication protocols, usually one focuses on the protocol itself,
and assumes the end-points to be free from malware or hardware attacks. In contrast, we are here
focusing on securing the end-points of such an end-to-end secure communication protocol, i.e., the
centralized server application, as well as the client side applications (which now typically run on
smart phones). We make use of hardware enabled security features provided by the recent technol-
ogy of Intel’s SGX, part of the newer Skylake architectures. However, working with SGX can be
tedious, therefore, we are looking at simpler ways of programming, using the recent SCONE secure
containers. These are the secure counterparts of the popular Docker containers, implemented using
SGX. Our work of implementing Signal using Intel’s SGX can also be seen as an exploration and
testing of the new features and performance of this new security technology from Intel.

1 Motivation

Secure messaging protocols have been around for more than a decade, with off-the-record (OTR) proto-
col1 [5, 10] being a prominent example. OTR also has been implemented in standard instant messaging
clients for quite some time, e.g., in Adium2 (for MacOS), Jitsi3 (cross-platform), or through plug-ins in
the popular Pidgin4 (for Linux). However, these have not seen wide adoption, partly due to usability
difficulties [21, 25, 24], but also partly due to lack of motivation from the users. The Snowden reve-
lations, however, triggered more concern, and recently we have seen an explosion in secure messaging
implementations, with prominent example being the Signal protocol (formerly known as TextSecure). A
few recent studies appeared about secure messaging in general [20, 24], as well as formal analysis of
Signal/TextSecure [11, 12, 8] (the last two are going to be presented at the 2017 EuroS&P).

∗The second author was partially supported by the projects IoTSec – Security in IoT for Smart Grids, with number
248113/O70 part of the IKTPLUSS program funded by the Norwegian Research Council, and by the OffPAD project with
number E!8324 part of the Eurostars program funded by the EUREKA and European Community.

1https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
2https://www.adium.im
3https://jitsi.org/Main/About
4https://developer.pidgin.im/wiki/ThirdPartyPlugins

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://www.iotsec.no/
http://www.forskningsradet.no/prognett-iktpluss/Home_page/1254002053513
http://www.forskningsradet.no
https://www.offpad.org/
http://www.eurekanetwork.org/activities/eurostars
http://www.eurekanetwork.org
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://www.adium.im
https://jitsi.org/Main/About
https://developer.pidgin.im/wiki/ThirdPartyPlugins

2 Securing Signal using Intel SGX based Containers

The Signal messenger, like many other secure messenger applications5 relies on a centralized in-
frastructure to achieve asynchronous6 communications between clients. The content of messages going
through the server are end-to-end encrypted, but information about the sender and receiver is known to
the server in order to route the messages [20]. This, and other, metadata can be used to obtain sensitive
information about the clients [14].

Keeping the metadata secure requires trust in a large software and hardware stack. Even more so
when the Signal server is set up in a cloud environment, since the trusted computing base (TCB) will
include privileged software like firmware, hypervisor, the providers cloud management software, and in
many cases the operating system as well, since cloud-providers supplies pre-built images. Not only do
you have to trust the providers hardware and software stack, one also has to trust the cloud-provider’s
personnel, like the system administrators, and other personnel with physical access to the hardware. New
research suggests you even have to trust other customers of the cloud-provider due to attacks like memory
massaging attacks [19] which can fully compromise co-hosted cloud VMs [22]. To secure the server and
metadata in this threat-model we have to remove the privileged software from the TCB, and protect the
application’s memory from lateral attacks.

In the recent survey [24] of secure messenger protocols and applications, the threat-model assumes
that the end-points are secure from malware and hardware attacks. However, considering the large TCB,
we would like to remove this assumption by using Intel Software Guard Extension (SGX) [15, 1] to keep
the metadata encrypted in memory. Moreover, we think that the same technology of Intel’s SGX can
be used to similarly secure the desktop Signal clients. However, for mobile clients (e.g., running inside
Android environments) one needs to investigate alternatives (e.g., ARM’s TrustZone).

Our motivation is similar in spirit to the motivation of the authors of the recent article [7] where they
want to secure the data handled by the Apache ZooKeeper (used for coordination of distributed systems)
against privileged software, like hypervisors. They compare two approaches, either implementing the
whole application inside an SGX enclave, or implementing only specific security functionalities inside
enclaves, e.g., for encrypting data before storing or passing it around.

In this talk we plan to introduce the Signal protocol, emphasising the central server end-point, as well
as introduce the essential functionalities of Intel’s SGX that we plan to use. We will continue to discuss
the recent secure containers of [2] and how they could be used for implementing the server-side of Signal.
We will end with discussions of drawbacks and alternatives, including the recent SecureKeeper [7] or
unikernels [13, 6] (where the recent Graphene [23] is the first, as far as we know, that claims support for
Intel SGX).

2 Some technical details for our approach

We first present the technologies that we plan to use, and in the end we give a short presentation of the
Signal instant messaging protocol.

5https://en.wikipedia.org/wiki/Comparison_of_instant_messaging_clients#Secure_messengers
6Note that OTR was intended for synchronous communications as with chats, and is thus not usable for securing SMS like

asynchronous communications (a few modifications are needed, see [11]).

https://en.wikipedia.org/wiki/Comparison_of_instant_messaging_clients#Secure_messengers

K. Severinsen & C. Johansen & S. Bursuc 3

2.1 Intel Software Guard Extension

The Intel SGX [16] is an ISA extension to the Intel architecture that provides a trusted execution environ-
ment (TEE) for user applications. SGX allows applications to create a protected memory area inside its
address space called an enclave. This protected environment provides confidentiality and integrity even
from privileged software such as hypervisors, BIOS, or operating systems. Compared to TPMs [3, 9] the
Intel SGX reduces the trust requirements from the CPU & TPM providers to just the CPU provider.

Enclaves can be created by an ECREATE instruction, which will create an SGX enclave control structure
(SECS) in protected memory. Using the EADD instruction, memory pages can be added to the enclave.
These pages are mapped to an encrypted and integrity protected part of physical memory, called the
enclave page cache (EPC). On EPC page accesses the CPU will check that the CPU is running in enclave
mode and proceed to decrypt the page at the granularity of cache lines. SGX only supports a limited
amount of physical memory (in the range of 128 MB) for the EPC, but supports a paging mechanism for
swapping the encrypted and integrity protected EPC pages in normal memory.

The code running inside an enclave has full access to the address space of the application, but to
access the enclave the application must explicitly enter the enclave by calling the EENTER instruction.
This will put the CPU in enclave mode and transfer the execution to a predefined point inside the enclave.
The CPU will continue to run in enclave mode until the code explicitly exits by calling EEXIT, or until
an exception (asynchronous exit) returns the control back to the operating system. After the operating
system has handled the exception, the enclave can be resumed by calling ERESUME to return the execution
inside the enclave.

In order to bootstrap a secure enclave, the enclave code cannot be encrypted, and it is thus open for
inspection and modification by the host. To ensure the integrity of the enclave code, a cryptographic
measurement is created of all the pages loaded into the enclave by executing the EINIT instruction.

When using SGX on a remote host, a trusted third party (Intel) can perform remote attestation to
verify that the host is using a genuine implementation of SGX, and that the code sent to the host, is the
same code that is loaded into the enclave. After the integrity of the enclave has been established the
application can be started, and by establishing a secure communication channel from the client to the
enclave using standard TLS, secrets like keys and sensitive data can be sent to the enclave.

If properly implemented, the enclave memory is confidentiality and integrity protected against firmware
attacks, privileged software attacks, operator/administrator access and replay attacks. Entering the en-
clave is only possible at the predefined entry points, and protecting these entry points is the responsibility
of the developer.

2.2 Linux Containers

The concept of software containers tries to solve the problem of managing software dependencies [17].
Conflicting or missing dependencies can be a big problem when deploying software to different services.
If the developer does not have the same versions of the software as running in the production environ-
ment, a dependency conflict might break the functionality of the application. To solve this containers
uses an isolated runtime environment, and pack the dependencies together with the application inside
the container. A popular implementation is the Docker containers,7 which also provide a repository8 of

7https://www.docker.com
8https://store.docker.com

https://www.docker.com
https://store.docker.com

4 Securing Signal using Intel SGX based Containers

Host operating system (Linux)

Container

Enclave

Application Code

Application-specific libraries

Network shield

M:N Threading

SGX-aware C library

Asynchronous system call interface

syscall3
syscall2

resp0
resp1

File-system shield

SCONE kernel module Intel SGX driver

Figure 1: SCONE architecture [2]

Docker images curated by both trusted developers and the Docker community, making it very easy to
pull and deploy applications.

Unlike virtual machines, that virtualizes the hardware of a machine, linux container software like
Docker uses OS-level virtualization to isolate processes and their runtime environment. This makes
containers much more lightweight than VMs since they do not need to boot up a full operating system
to start the application. A container has all the files and binaries needed to run the application, but uses
the operating system for services like I/O and resource management. Docker builds on the technology of
Linux Containers (LXC)9 to provide containerization. Using kernel namespaces the containers get their
own view of system resources, and using control groups these resources can be limited by the host.

2.3 Approach: SCONE secure containers

An alternative approach to the SecureKeeper re-implementation using small enclaves is to run the entire
unmodified application inside one enclave. Previous work on this approach include Haven [4], where a
library operating system [13] and a shield module that handles scheduling threads, memory management
and a file system were included inside the enclave to be able to run unmodified windows applications
inside the enclave. A drawback of this solution is the large subset of Windows that the library OS
includes, which adds considerable extra code to the TCB.

Recent work [2] in running unmodified applications inside a single SGX enclave make use of Docker
containers instead of a library operating system. Thus, the objective of SCONE [2] is to make a secure
container mechanism by placing the application and application-specific libraries of Docker containers
inside an enclave.

Running unmodified applications inside enclaves requires a standard C library (libc) interface and an
external interface to execute system calls, since enclaves do not support system calls. SCONE includes

9https://linuxcontainers.org/lxc/

https://linuxcontainers.org/lxc/

K. Severinsen & C. Johansen & S. Bursuc 5

the musl10 libc library and the Linux Kernel Library [18] (LKL) to create a small Linux library OS.
Exiting and entering enclaves is an expensive operations, since it needs to do a context switch from

the protected stack, and then sanitize the CPU registers so as to not leak information. To minimize
enclave exits and entries, SCONE uses the hybrid (M:N) threading model, and supports asynchronous
system calls by writing system calls on a queue outside the enclave. As seen in figure 1, the kernel
module on the host will execute the system calls from the call queue, and put responses in the response
queue.

To protect the enclave code from a malicious operating system, the system call interface does var-
ious checks on the system call parameters and responses, like checking if pointers and buffers resides
inside or outside the enclave. The authors of [2] describe three different shield modules to protect I/O
operations: the file-system shield, network shield and console shield. The file-system shield protects the
confidentiality and integrity of files by transparently encrypting files used by the containers overlay file-
system, which resides outside the secure enclave. The network shield encrypts the container’s network
interface transparently using TLS. The console shield encrypts the unidirectional console stream from
the application using symmetric-key encryption; enabeling the operator to decrypt the console stream
from a trusted environment. The shield modules are extendible, in case the containerized application has
additional interfaces that require protection.

To create the secure containers for SCONE, the applications must be built as a SCONE executable by
statically compiling them with the application-specific libraries, and the SCONE libraries. There is also
need for some additional configurations in order to enable and configure the different shield modules.
When complete, the secure Docker image can be published using the standard Docker Store. The secret
information needed by the enclave to encrypt the file-system and console stream is provided by a special
configuration file called the startup configuration file (SCF). The SCF is not included in the image, but
is sent to the enclave over the TLS secured channel after SGX has verified the integrity and identity of
the enclave.

2.4 Other approaches: SecureKeeper and Graphene libOS

Implementing native SGX support for the Signal server will require some additional code to invoke
the special system calls used to create and enter the enclave. One approach is to identify the critical
sections in the server that handles the metadata and routing of messages, and implement them using SGX.
SecureKeeper used this approach to implement Apache ZooKeeper using SGX [7]. In SecureKeeper, an
SGX enclave is used as a secure entry point for TLS encrypted requests to the server. The requests are
decrypted inside the enclave, then the payload and path field of the requests are encrypted again before
passing the request out of the enclave to the normal ZooKeeper code. The re-encryption of the payload
and path is transparent to the ZooKeeper cluster, and is basically working like a disk-encryption scheme
for the cluster. For SecureKeeper this approach worked well, and with little overhead, as measured by the
authors. However, this may require more detailed programming knowledge of the system to be secured,
as well as a re-implementation.

Scone provides a very small TCB by only including a common C library inside their secure container,
but it should also be possible to run the Signal server inside a full library OS (also called unikernels).
The Graphene library OS [23] supports multi-process applications, and have recently added support for
running unmodified binaries inside SGX Enclaves11. Graphene claims to be able to run Java applications
on top of OpenJDK inside a enclave with minimal development efforts.

10https://www.musl-libc.org
11https://github.com/oscarlab/graphene/wiki/Introduction-to-Intel-SGX-Support

https://www.musl-libc.org
https://github.com/oscarlab/graphene/wiki/Introduction-to-Intel-SGX-Support

6 Securing Signal using Intel SGX based Containers

2.5 Signal protocol

Signal is an instant messaging protocol devised with similar goals as the off-the-record protocol, i.e.,

end-to-end security or confidentiality, where only the intended conversation partners are able to read
a message; in particular, the message should not be available to a third party like an intermediary
server (offering some infrastructure support);

deniability which, given a sequence of messages and the relevant keys, ensures that there is no way for
a judge to prove that a certain message was authored by a certain user;

forward secrecy which ensures that previously encrypted messages cannot be decrypted upon obtaining
current and/or future keys;

future secrecy which ensures that a message cannot be decrypted even if keys from previous sessions
are being compromised.

The Signal protocol goes over several phases, and a third trusted server is also involved, besides
the two honest parties participating in the conversation. By honest parties it is only assumed that their
long-term cryptographic material is not compromised.

The registration phase involves the Trusted Server, as well as Google Cloud Messaging system
(GCM). The trusted server needs the phone number of the participant to which a verification token
is sent to check the ownership of the phone; the exchange of messages is done through HTTP
and uses basic authentication. Various cryptographic material will be stored on the server for this
user, some used to encrypt messages sent to GCM, others, the pre-keys, are used in encrypting
messages.

A key comparing phase can be done by the human parties, similar to what is done in OTR. In this
stage the Signal App can compute a QR code, to make the comparison automatic.

Sending message phase involves the trusted server to provide the stored pre-keys to be used in a
complex key derivation algorithm called Axolot-ratcheting. This this conversation with the server,
more information than just the message is being sent. In particular, identities of the participants.

Sending subsequent messages, or sending reply messages within the same session, does not involve
the trusted server.

2.6 Signal server

In [2] the authors built and benchmarked secure Docker images of Redis, NGINX, and Memcached. These
applications are implemented in C, and can run natively inside the secure container. The Signal server
however, is a Java application, and needs to run on top of a Java Virtual Machine (JVM). A lightweight
JVM like JamVM12 could be statically compiled to use the SCONE libraries and system call interface,
and included inside the enclave.

The Signal server has at least three security critical parts. When sending a message to some user using
Signal, the message is end-to-end encrypted using the recipients public-key, but the message header also
contains the phone number of the recipient [20]. The network shield of SCONE will protect the this data,
since the traffic is only decrypted inside the enclave. Both the SecureKeeper and the SCONE approach
would be able to secure this information, since both will protect the communication end-points. The
server already tries to protects the user-data on the server by only storing a hash of the phone numbers.

12http://jamvm.sourceforge.net

http://jamvm.sourceforge.net

K. Severinsen & C. Johansen & S. Bursuc 7

To lookup the contact information would require hashing the phone number and searching the database.
Both the computations and the database should be hidden to the host, and the approach used by SCONE
should accomplish this by running all of the application inside the enclave, and using the file-system
shield of SCONE to protect the database.

To facilitate asynchronous first-time communications between users, the Signal server also stores a
number of precomputed Diffie-Hellman public-keys from the users. These pre-keys are used to generate
a shared secret between the users. Since pre-keys are tied to a user, this information should also be
protected, and the same mechanism as above could be used to protect this information.

SCONE have not yet implemented support for SGX remote attestation, but using this feature is quite
important if deploying the server to the cloud; remote attestation will confirm that the server is proteced
by a genuine SGX implementation, and that the application code has not been modifed.

References

[1] Ittai Anati, Shay Gueron, Simon Johnson & Vincent Scarlata (2013): Innovative technology for CPU based
attestation and sealing. In: 2nd International Workshop on Hardware and Architectural Support for Se-
curity and Privacy, HASP ’13, ACM. Available at https://software.intel.com/en-us/articles/
innovative-technology-for-cpu-based-attestation-and-sealing.

[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Pe-
ter Pietzuch & Christof Fetzer (2016): SCONE: Secure Linux Containers with Intel SGX. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association, GA,
pp. 689–703. Available at https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/arnautov.

[3] W. Arthur, D. Challener & K. Goldman (2015): A Practical Guide to TPM 2.0. APress, doi:10.1007/978-1-
4302-6584-9.

[4] Andrew Baumann, Marcus Peinado & Galen Hunt (2015): Shielding Applications from an Untrusted Cloud
with Haven. ACM Trans. Comput. Syst. 33(3), pp. 8:1–8:26, doi:10.1145/2799647.

[5] Nikita Borisov, Ian Goldberg & Eric Brewer (2004): Off-the-record Communication, or, Why Not to Use
PGP. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES ’04, ACM,
New York, NY, USA, pp. 77–84, doi:10.1145/1029179.1029200.

[6] A. Bratterud, A. A. Walla, H. Haugerud, P. E. Engelstad & K. Begnum (2015): IncludeOS: A Minimal,
Resource Efficient Unikernel for Cloud Services. In: 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 250–257, doi:10.1109/CloudCom.2015.89.

[7] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz, Christof Fetzer, Pe-
ter Pietzuch & Rüdiger Kapitza (2016): SecureKeeper: Confidential ZooKeeper Using Intel SGX. In:
Proceedings of the 17th International Middleware Conference, Middleware ’16, ACM, pp. 14:1–14:13,
doi:10.1145/2988336.2988350.

[8] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt & Douglas Stebila (2017): A formal
security analysis of the Signal messaging protocol. In: 2nd IEEE European Symposium on Security and
Privacy, IEEE. Available at https://eprint.iacr.org/2016/1013.

[9] S. Delaune, S. Kremer, M. D. Ryan & G. Steel (2011): Formal analysis of protocols based on TPM state
registers. In: Proceedings of the 24th IEEE Computer Security Foundations Symposium (CSF’11), IEEE
Computer Society Press, Cernay-la-Ville, France, pp. 66–82, doi:10.1109/CSF.2011.12.

[10] Mario Di Raimondo, Rosario Gennaro & Hugo Krawczyk (2005): Secure Off-the-record Messaging. In:
Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, WPES ’05, ACM, New York,
NY, USA, pp. 81–89, doi:10.1145/1102199.1102216.

https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
http://dx.doi.org/10.1007/978-1-4302-6584-9
http://dx.doi.org/10.1007/978-1-4302-6584-9
http://dx.doi.org/10.1145/2799647
http://dx.doi.org/10.1145/1029179.1029200
http://dx.doi.org/10.1109/CloudCom.2015.89
http://dx.doi.org/10.1145/2988336.2988350
https://eprint.iacr.org/2016/1013
http://dx.doi.org/10.1109/CSF.2011.12
http://dx.doi.org/10.1145/1102199.1102216

8 Securing Signal using Intel SGX based Containers

[11] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk & T. Holz (2016): How Secure is TextSe-
cure? In: 2016 IEEE European Symposium on Security and Privacy (EuroS P), pp. 457–472,
doi:10.1109/EuroSP.2016.41.

[12] N. Kobeissi, K. Bhargavan & B. Blanchet (2017): Automated Verification for Secure Messaging Proto-
cols and their Implementations: A Symbolic and Computational Approach. In: IEEE European Sympo-
sium on Security and Privacy (EuroS&P). Available at http://prosecco.gforge.inria.fr/personal/
bblanche/publications/KobeissiBhargavanBlanchetEuroSP17.pdf. To appear.

[13] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh, Thomas Gazag-
naire, Steven Smith, Steven Hand & Jon Crowcroft (2013): Unikernels: Library Operating Systems for
the Cloud. In: Proceedings of the Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’13, ACM, New York, NY, USA, pp. 461–472,
doi:10.1145/2451116.2451167.

[14] Jonathan Mayer, Patrick Mutchler & John C. Mitchell (2016): Evaluating the privacy properties of
telephone metadata. Proceedings of the National Academy of Sciences 113(20), pp. 5536–5541,
doi:10.1073/pnas.1508081113.

[15] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue
& Uday R. Savagaonkar (2013): Innovative Instructions and Software Model for Isolated Execution. In:
Proceedings of the 2Nd International Workshop on Hardware and Architectural Support for Security and
Privacy, HASP ’13, ACM, New York, NY, USA, pp. 10:1–10:1, doi:10.1145/2487726.2488368.

[16] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue &
Uday R. Savagaonkar (2013): Innovative instructions and software model for isolated execution. In: HASP@
ISCA, p. 10. Available at http://css.csail.mit.edu/6.858/2015/readings/intel-sgx.pdf.

[17] Dirk Merkel (2014): Docker: Lightweight Linux Containers for Consistent Development and Deployment.
Linux J. 2014(239). Available at http://dl.acm.org/citation.cfm?id=2600239.2600241.

[18] O. Purdila, L. A. Grijincu & N. Tapus (2010): LKL: The Linux kernel library. In: 9th RoEduNet IEEE Inter-
national Conference, pp. 328–333. Available at http://ieeexplore.ieee.org/document/5541547/.

[19] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida & Herbert Bos (2016): Flip Feng
Shui: Hammering a Needle in the Software Stack. In: 25th USENIX Security Symposium (USENIX Security
16), USENIX Association, Austin, TX, pp. 1–18. Available at https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/razavi.

[20] Christoph Rottermanner, Peter Kieseberg, Markus Huber, Martin Schmiedecker & Sebastian Schrittwieser
(2015): Privacy and data protection in smartphone messengers. In: Proceedings of the 17th Inter-
national Conference on Information Integration and Web-based Applications & Services, ACM, p. 83,
doi:10.1145/2837185.2837202.

[21] Ryan Stedman, Kayo Yoshida & Ian Goldberg (2008): A User Study of Off-the-record Messaging. In: Pro-
ceedings of the 4th Symposium on Usable Privacy and Security, SOUPS ’08, ACM, New York, NY, USA,
pp. 95–104, doi:10.1145/1408664.1408678.

[22] Jakub Szefer, Eric Keller, Ruby B Lee & Jennifer Rexford (2011): Eliminating the hypervisor attack surface
for a more secure cloud. In: Proceedings of the 18th ACM conference on Computer and Communications
Security, ACM, pp. 401–412, doi:10.1145/2046707.2046754.

[23] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen, Jitin John, Harry A.
Kalodner, Vrushali Kulkarni, Daniela Oliveira & Donald E. Porter (2014): Cooperation and Security Isola-
tion of Library OSes for Multi-process Applications. In: Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, ACM, New York, NY, USA, pp. 9:1–9:14, doi:10.1145/2592798.2592812.

[24] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg & M. Smith (2015): SoK: Secure Messaging.
In: 2015 IEEE Symposium on Security and Privacy, pp. 232–249, doi:10.1109/SP.2015.22.

[25] Alma Whitten & J. D. Tygar (1999): Why Johnny Can’T Encrypt: A Usability Evaluation of PGP 5.0. In:
Proceedings of the 8th Conference on USENIX Security Symposium - Volume 8, SSYM’99, USENIX Asso-

http://dx.doi.org/10.1109/EuroSP.2016.41
http://prosecco.gforge.inria.fr/personal/bblanche/publications/KobeissiBhargavanBlanchetEuroSP17.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/publications/KobeissiBhargavanBlanchetEuroSP17.pdf
http://dx.doi.org/10.1145/2451116.2451167
http://dx.doi.org/10.1073/pnas.1508081113
http://dx.doi.org/10.1145/2487726.2488368
http://css.csail.mit.edu/6.858/2015/readings/intel-sgx.pdf
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://ieeexplore.ieee.org/document/5541547/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
http://dx.doi.org/10.1145/2837185.2837202
http://dx.doi.org/10.1145/1408664.1408678
http://dx.doi.org/10.1145/2046707.2046754
http://dx.doi.org/10.1145/2592798.2592812
http://dx.doi.org/10.1109/SP.2015.22

K. Severinsen & C. Johansen & S. Bursuc 9

ciation, Berkeley, CA, USA, pp. 14–14. Available at http://dl.acm.org/citation.cfm?id=1251421.
1251435.

http://dl.acm.org/citation.cfm?id=1251421.1251435
http://dl.acm.org/citation.cfm?id=1251421.1251435

On Composability of Game-based Password
Authenticated Key Exchange

Jean Lancrenon1 and Marjan Škrobot2

1 itrust consulting,
lancrenon.jean@gmail.com

2 SnT, University of Luxembourg,
marjan.skrobot@uni.lu

Abstract. It is standard practice that the secret key derived from an
execution of Password Authenticated Key Exchange (PAKE) protocol is
used to authenticate and encrypt some data payload using symmetric
key protocols. Unfortunately, most PAKEs of practical interest are stud-
ied using so-called game-based models, which – unlike simulation models
– do not guarantee secure composition per se. However, Brzuska et al.
(CCS 2011) have shown that a middle ground is possible in the case
of authenticated key exchange that relies on Public-Key Infrastructure
(PKI): the game-based models do provide secure composition guarantees
when the class of higher-level applications is restricted to symmetric-key
protocols. The question that we pose in this paper is whether or not a
similar result can be exhibited for PAKE. Our work answers this question
positively. More specifically, we show that PAKE protocols secure accord-
ing to the game-based Real-or-Random (RoR) definition of Abdalla et
al. (PKC 2005) allow for safe composition with arbitrary, higher-level
symmetric key protocols. Since there is evidence that most PAKEs se-
cure in the Find-then-Guess (FtG) model are in fact secure according to
RoR definition, we can conclude that nearly all provably secure PAKEs
enjoy a certain degree of composition, one that at least covers the case
of implementing secure channels.

Keywords: Cryptographic protocols, Password authenticated key exchange,
Composability, Composition Theorem.

1 Introduction

1.1 The problem

The objective of Password-Authenticated Key Exchange (PAKE) is to allow se-
cure authenticated session key establishment over insecure networks between two
or more parties who only share a low-entropy password. Even though there may
be other applications of PAKE, it is common practice that the secret key derived
from a PAKE execution is used to authenticate and encrypt some data payload
using symmetric key primitives and protocols. For example, two certificate-less

2 On Composability of Game-based Password Authenticated Key Exchange

TLS proposals that integrate PAKE as a key exchange mechanism have recently
appeared on the IETF [15,16]3. When looking at these two drafts through the
lens of composition, one sees that both of them suggest the PAKE be followed
by Authenticated Encryption (AE) algorithms (namely AES-CCM and AES-
GCM). Another project that makes use of PAKE is Magic Wormhole [1], the file
transfer protocol in which PAKE is composed with NaCl’s crypto secretbox con-
taining the stream cipher XSalsa20 and MAC algorithm Poly1305. Consequently,
being able to guarantee the overall security of a composed protocol, consisting
of first running a PAKE and then a symmetric key application, is imperative.

Unfortunately, the provably secure composition is difficult to automatically
obtain without using complex, usually simulation-based models. Furthermore,
most PAKEs in the literature are studied using so-called game-based models,
which – while being workable to obtain acceptable proofs – do not guarantee
secure composition. The most common such model used is the Find-then-Guess
(FtG) model of Bellare et al. [5].

In [11], Brzuska et al. show that a middle ground is possible in the case of
Public-Key Infrastructure-based key exchange (PKI-KE): Among other things,
they define a framework for PKI-KE that (1) is game-based and (2) allows to
prove that, under a certain technical condition, secure composition holds when
the class of higher-level applications is restricted to symmetric-key protocols.
The question is whether or not a similar result can be exhibited for PAKE.

1.2 Our contribution

In this paper, we answer this question positively by essentially adapting the
framework in [11] to the password-based case. More specifically, we show that
PAKE protocols secure in the sense of the game-based Real-or-Random (RoR)
definition of Abdalla et al. [3] allow for automatic, secure composition with
arbitrary, higher-level symmetric key protocols according to a security definition
very similar to that in [11]. Since in [3] the authors provide evidence that most
PAKEs secure in the FtG model of [5] are in fact secure according to RoR, we
can conclude that nearly all provably secure PAKEs enjoy a certain degree of
composition, one that at least covers the case of implementing secure channels. It
should be noted that for our result to hold, we also need the technical condition
mentioned earlier to be fulfilled. However, we emphasize that to the best of our
knowledge, for nearly all published PAKEs this is always the case. Prominent
examples include EKE [7], PAK [19], SPAKE2 [4], Dragonfly [17], and J-PAKE
[2,18]. The next paragraph explains our work in more detail.

3 The reason behind this integration - and not using PAKE with some symmetric
cipher over TCP - is to circumvent the need to establish a network protocol for data
transfer (i.e. TCP or UDP) and to negotiate symmetric key algorithms (or protocols)
on their own.

On Composability of Game-based Password Authenticated Key Exchange 3

1.3 Password-induced subtleties

It is well-known that already when dealing with “basic” PAKE definitions, the
usual low-entropy nature of the long-term authentication material causes defi-
nitional headaches. It is, therefore, no surprise that similar issues should be en-
countered here. We begin with a simple recap of how PAKE security is defined
in the foundational paper [5]. Then, we briefly explain the theorem of Brzuska et
al. [11] and show where passwords cause trouble. Finally, we demonstrate how
to circumvent this problem, and in particular why RoR is more suitable than
FtG.

The Find-then-Guess model for PAKE. As in all reasonable key exchange
security models, in [5] the adversary A is modeled as a network adversary: It
can bring to life protocol participants with access to the secret long-term keying
material and deliver to these instances messages of its choice. In the event that
an instance accepts and computes a session key, A may ask that this key is
revealed, modeling higher-level protocol leakage. In some models, it may even
corrupt protocol participants in an effort to account for e.g. forward secrecy.

Crucially, to capture the fundamental notion of session key semantic security,
A is allowed to make a single TestTest query, from which it receives either the real
session key computed by the target instance or a random key. A’s goal is to
determine which it is. Its advantage AdvAdvFtG

P (A) against protocol P is essentially
defined as the distance of its success probability from 1/2.

In PKI-KE, i.e. when users’ long-term keys are public key/secret key pairs,
it is natural to ask that AdvAdvFtG

P (A) be a negligible function in the security
parameter. When the long-term keys are passwords however – say, uniformly
selected from a dictionary PassPass of size N – the best we can expect is:

AdvAdvFtG
P (A) ≤ B · nse

N
+ ε, (1)

where B is some constant, ε is negligible, and nse measures the number of in-
stances A has tried online attacks on using guessed passwords4. Note that the
first right-hand term is not negligible in general.

The composition result for PKI-KE in [11]. Let S be some arbitrary, two-
party, symmetric key protocol and P; S denote its “natural” composition with
P. The main theorem established in [11] for the PKI-KE case states that for
every efficient adversary A playing a suitably defined security game against P; S
there exist efficient adversaries B against P and C against S such that following
formula holds:

AdvAdvP;S(A) ≤ q ·AdvAdvFtG
P (B) + AdvAdvS(C), (2)

where q is the maximum number of instances in play in the key exchange game.
Of course, in [11]’s framework, security of the composition holds when the left-
hand term is negligible. Therefore, the upper bound implies this under the con-
dition that P and S are secure. Indeed, observe that q is at most polynomial in

4 B is usually interpreted as the number of passwords that can be tested simultane-
ously during one log-on attempt.

4 On Composability of Game-based Password Authenticated Key Exchange

the security parameter and that AdvAdvFtG
P (B) is supposed to be negligible when

using PKI-KE. (And, of course, S is secure if AdvAdvS(C) is negligible for all C.)
This effectively shows that the security of the composition P; S is guaranteed by
the stand-alone security of P and S.

Two immediate password problems. There are two main obstacles to over-
come when trying to get a password analog of Eq. 2 to work, and both stem
from the non-negligible term in Eq. 1.

First, it is clear that the term q · AdvAdvFtG
P (B) cannot be negligible anymore.

Thus, it makes no sense to try and deduce from Eq. 2 that the left-hand side
is ultimately negligible. The only way out of this is to “boost” the left-hand
side. Fortunately, there is a natural way to do this. Indeed, intuitively it should
be clear that the composed protocol will also suffer from a breach in the event
A guesses a password and mounts an online attack. Thus, it is the definition
of security for the composed protocol that has to change, in that it needs to
incorporate the same non-negligible bound as in Eq. 1. In other words, at best
we can only require by definition that:

AdvAdvP;S(A) ≤ B · nse

N
+ ε, (3)

where B is some constant, ε is negligible, and nse counts A’s online attacks. In
short, our first problem is handled at the definition level. But, Eq. 3 leads to our
second problem.

If we simply plug our optimal FtG PAKE bound into the right-hand side
of 2, we obtain

AdvAdvP;S(A) ≤ B · q · nse

N
+ AdvAdvS(C). (4)

This is not what we want: The q factor is still making the desired upper bound
too large for our purpose! This is where using the RoR model comes in handy.

In the proof of the main theorem in [11], the authors need to make use of
a hybrid argument indexed by the instances in play: The idea is to have the
simulator plant the only available TestTest query at the randomly chosen index.
This is what makes the q come out. Our observation is that by using the RoR
model – in which multiple TestTest queries are allowed – we can avoid having this
parasite factor appear.

In short, our main theorem says that for every efficient adversary A playing
against P; S there exist efficient adversaries B and C such that:

AdvAdvP;S(A) ≤ AdvAdvRoR
P (B) + AdvAdvS(C), (5)

and from this theorem we get that if P and S are actually secure, the optimal
bound stated in Eq. 3 holds5.

5 Note that the presence of passwords has no effect on the security of S as a stand-alone
primitive. This is why AdvAdvS(C) should remain negligible.

On Composability of Game-based Password Authenticated Key Exchange 5

The technical condition. Let us briefly return to the “technical condition”
mentioned in paragraphs 1.1 and 1.2. Roughly, it states that when observing
many PAKE interactions over a network, it is publicly possible to determine pairs
of communicants holding the same session key. This property is called partnering
and is formally described further down. Often in PAKE research, partnering is
defined using session identifiers that are locally computed. In practice, most
published PAKEs define these identifiers simply by concatenating the PAKE
message flows with their identities. Clearly, this is a publicly checkable criterion.
Hence, the condition causes no real limitation to our result.

The big picture. We end this section by putting our result in a wider per-
spective. The RoR model was initially introduced by Abdalla et al. in [3] so that
they could prove the security of a three-party PAKE generically constructed
from two runs of a two-party PAKE. Also, they demonstrate that RoR security
is better than FtG security for all PAKEs. Our work further validates the last
claim. Indeed, RoR allows us to prove some composability in a way that seems
difficult to adapt to FtG.

1.4 Related work

Here we shall briefly go over the papers that have contributed to secure compo-
sition of key exchange with other protocols.

Composition of key exchange. All key exchange models devised in the last
two decades (e.g. [6,5,3,13]) support concurrent self-composition of key exchange
protocols. The first to successfully provide a framework in the game-based setting
that grants stronger composition guarantees were Canetti and Krawczyk [13].
Indeed, they identified a security notion (SK-security) that is sufficient to yield
a secure channel when appropriately composed with a secure symmetric encryp-
tion algorithm and MAC. As far as we know, this result was never adapted to the
password-based case. The simulation-based models of Shoup [20] (for ordinary
key exchange) and Boyko et al. [8] (for PAKE) claim to have a “built in” com-
position guarantee, but this only been informally argued. Later, applying the
methodology of Universal Composability (UC) for key exchange [14], a second,
stronger simulation-based notion – Universally Composable PAKE – was pro-
posed by [12]. These models’ very strong composition guarantees are appealing,
but unfortunately the models themselves are harder to work with than the sim-
pler, game-based models. Another shortcoming of this approach is its restrictive
nature which yields not overly efficient protocols. For a nice discussion on the
limitations of UC and simulation-based AKE in general, we point reader to [10]
and [13].

Although key exchange protocols proven in the game-based setting of [6]
remained mostly used in practice, it took almost a decade before someone started
addressing the problem of studying the composability properties of this setting.
Namely, this was done by Brzuska et al. in [11,21,9]. They presented a more
general framework which allowed showing that BR-style secure key exchange

6 On Composability of Game-based Password Authenticated Key Exchange

protocols are composable with a wide class of symmetric key protocols under
the condition that a public session matching algorithm for the key exchange
protocol exists. In subsequent work [10], the authors have shown that even a
weaker notion for key exchange protocols than BR-security would still be enough
for composition, and apply this to the TLS handshake. As far as we aware, no
similar study has been conducted in the password-based setting. With this work,
we aim to beginning filling this gap, by first adapting the results of [11].

2 Composition Result

As already explained in the introduction, for our composition result to hold we
need to work with a PAKE model that is stronger than the FtG one from [5],
namely the ROR model of [3]. This model guarantees that the adversary who
does not know the correct password cannot distinguish any honestly generated
session key from a random key drawn from the key space. In contrast, in the FtG
model, only the session key that is targeted by the single available TestTest query is
indistinguishable from random.

The rest of this section is devoted to present the following theorem:

Theorem 1. Let (PWGen,P) be a password authenticated key exchange proto-
col outputting keys according to a distribution K, that is secure according to the
RoR game GRoR, and for which an efficient partner matching algorithm exists.
Let (KGen,S) be a symmetric key protocol secure according to the game Gsym. If
the keys used in the symmetric key protocol algorithm S are distributed according
to K, then the composed protocol (CGen,C) is secure according to Gcom and the
advantage of any efficient adversary A against composed protocol satisfies

AdvAdvcomC (A) ≤ AdvAdvRoR
P (B) + AdvAdvskpS (C) (6)

for some efficient adversaries B and C.

Intuition behind the proof. To prove Theorem 1, we first argue that all the session
keys computed by the PAKE can be randomized, since the protocol is assumed
to be RoR-secure (with weak forward secrecy). With this step, we will practically
decouple the PAKE and SKP phases of the composed protocol, because the ses-
sion keys that used in the SKP phase of the composition will, from that point on,
be completely independent of those computed in the PAKE phase. Then, in the
next step, we will show that the advantage of an adversary against the resulting
composed game (with random keys) is upper bounded by the advantage of an
adversary against the security game of the underlying symmetric key protocol.

An immediate consequence of our theorem is that preceding a secure sym-
metric key algorithm with an optimally RoR-secure PAKE yields an optimally
secure composed protocol according to our definition of composition security.

On Composability of Game-based Password Authenticated Key Exchange 7

3 Conclusion

Considered well-studied cryptographic objects in academia, PAKE protocols are
just starting to appear more widely as building blocks in commercial real-world
applications. They are typically used to generate keys that will grant two (or
more) parties means to subsequently establish some type of secure channel be-
tween them. However, one cannot directly claim that the security of such a com-
posed protocol holds, since PAKEs that are typically deployed – due to their
efficiency and easier setup – are proven secure in game-based models that do
not necessarily provide composition guarantees. Therefore, to substantiate the
expected security claims, a new security proof would need to be exhibited for
the entire protocol from scratch. As a result of Theorem 1, a modular design
of more complex protocols is possible: One can obtain the secure protocol that
would consist of RoR-secure PAKE protocol followed by a secure symmetric key
protocol, without any additional analysis.

As future work, it would be interesting to adapt to the password-based case
the study in [10] that among other things aim to take into account the incorpo-
ration of certain specific session-key-dependent messages (such as the “Finished”
message from TLS). This could be useful for the protocols recently specified on
the IETF [15,16]. Another observation worth making is that formally, our result
could certainly adapted to the case of any authenticated key exchange.

References

1. Magic Wormhole (2016), https://github.com/warner/magic-wormhole
2. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE Password-

Authenticated Key Exchange Protocol. In: 2015 IEEE Symposium on Security and
Privacy, SP 2015. pp. 571–587. IEEE Computer Society (2015)

3. Abdalla, M., Fouque, P., Pointcheval, D.: Password-Based Authenticated Key Ex-
change in the Three-Party Setting. In: Vaudenay, S. (ed.) Public-Key Cryptography
– PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer (2005)

4. Abdalla, M., Pointcheval, D.: Simple Password-Based Encrypted Key Exchange
Protocols. In: Menezes, A. (ed.) Topics in Cryptology - CT-RSA 2005. LNCS, vol.
3376, pp. 191–208. Springer (2005)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
Against Dictionary Attacks. In: Advances in Cryptology – EUROCRYPT 2000.
LNCS, vol. 1807, pp. 139–155. Springer (2000)

6. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Ad-
vances in Cryptology - CRYPTO 1993. pp. 232–249 (1993)

7. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. In: 1992 IEEE Symposium on Research in
Security and Privacy, SP 1992. pp. 72–84 (1992)

8. Boyko, V., MacKenzie, P.D., Patel, S.: Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. In: Preneel, B. (ed.) Advances in Cryptology
– EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer (2000)

9. Brzuska, C.: On the Foundations of Key Exchange. Ph.D. thesis, Darmstadt Uni-
versity of Technology (2013)

https://github.com/warner/magic-wormhole

8 On Composability of Game-based Password Authenticated Key Exchange

10. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less is more:
Relaxed yet Composable Security Notions for Key Exchange. International Journal
of Information Security 12(4), 267–297 (2013)

11. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway Key Exchange Protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
Proceedings of the 18th ACM Conference on Computer and Communications Se-
curity, CCS 2011. pp. 51–62. ACM (2011)

12. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally Compos-
able Password-Based Key Exchange. In: Cramer, R. (ed.) Advances in Cryptology
– EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer (2005)

13. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) Advances in Cryptology -
EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer (2001)

14. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In: Knudsen, L.R. (ed.) Advances in Cryptology - EUROCRYPT
2002. LNCS, vol. 2332, pp. 337–351. Springer (2002)

15. Cragie, R., Hao, F.: Elliptic Curve J-PAKE Cipher Suites for Trans-
port Layer Security (TLS) (2016), https://datatracker.ietf.org/doc/

draft-cragie-tls-ecjpake/

16. Harkins, D.: Secure Password Ciphersuites for Transport Layer Security (TLS)
(2016), https://datatracker.ietf.org/doc/draft-harkins-tls-dragonfly/

17. Lancrenon, J., Skrobot, M.: On the Provable Security of the Dragonfly Protocol.
In: Lopez, J., Mitchell, C.J. (eds.) Information Security – ISC 2015. LNCS, vol.
9290, pp. 244–261. Springer (2015)

18. Lancrenon, J., Skrobot, M., Tang, Q.: Two More Efficient Variants of the J-PAKE
Protocol. In: Manulis, M., Sadeghi, A., Schneider, S. (eds.) Applied Cryptography
and Network Security – ACNS 2016. LNCS, vol. 9696, pp. 58–76. Springer (2016)

19. MacKenzie, P.: The PAK Suite: Protocols for Password-Authenticated Key Ex-
change. DIMACS Technical Report 2002-46 (2002)

20. Shoup, V.: On Formal Models for Secure Key Exchange. Cryptology ePrint
Archive, Report 1999/012 (1999)

21. Williams, S.C.: On the Security of Key Exchange Protocols. Ph.D. thesis, Univer-
sity of Bristol, UK (2011)

https://datatracker.ietf.org/doc/draft-cragie-tls-ecjpake/
https://datatracker.ietf.org/doc/draft-cragie-tls-ecjpake/
https://datatracker.ietf.org/doc/draft-harkins-tls-dragonfly/

On the Content Security Policy Violations due to the
Same-Origin Policy

Dolière Francis Some
Université Côte d’Azur

Inria, France
doliere.some@inria.fr

Nataliia Bielova
Université Côte d’Azur

Inria, France
nataliia.bielova@inria.fr

Tamara Rezk
Université Côte d’Azur

Inria, France
tamara.rezk@inria.fr

ABSTRACT
Modern browsers implement different security policies such
as the Content Security Policy (CSP), a mechanism designed
to mitigate popular web vulnerabilities, and the Same Ori-
gin Policy (SOP), a mechanism that governs interactions
between resources of web pages.

In this work, we describe how CSP may be violated due
to the SOP when a page contains an embedded iframe from
the same origin. We analyse 1 million pages from 10,000 top
Alexa sites and report that at least 31.1% of current CSP-
enabled pages are potentially vulnerable to CSP violations.
Further considering real-world situations where those pages
are involved in same-origin nested browsing contexts, we
found that in at least 23.5% of the cases, CSP violations are
possible.

During our study, we also identified a divergence among
browsers implementations in the enforcement of CSP in sr-
cdoc sandboxed iframes, which actually reveals a problem
in Gecko-based browsers CSP implementation. To amelio-
rate the problematic conflicts of the security mechanisms,
we discuss measures to avoid CSP violations.

1. INTRODUCTION
Modern browsers implement different specifications to se-

curely fetch and integrate content. One widely used specifi-
cation to protect content is the Same Origin Policy (SOP)[3].
SOP allows developers to isolate untrusted content from a
different origin. An origin here is defined as scheme, host,
and port number. If an iframe’s content is loaded from a
different origin, SOP controls the access to the embedder
resources. In particular, no script inside the iframe can ac-
cess content of the embedder page. However, if the iframe’s
content is loaded from the same origin as the embedder
page, there are no privilege restrictions w.r.t. the embed-
der resources. In such a case, a script executing inside the
iframe can access content of the embedder webpage. Scripts
are considered trusted and the iframe becomes transparent
from a developer view point. A more recent specification to

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3038914

.

Figure 1: An XSS attack despite CSP.

protect content in web pages is the Content Security Policy
(CSP)[19]. The primary goal of CSP is to mitigate cross site
scripting attacks (XSS), data leaks attacks, and other types
of attacks. CSP allows developers to specify, among other
features, trusted domain sources from which to fetch con-
tent. One of the most important features of CSP, is to allow
a web application developer to specify trusted JavaScript
sources. This kind of restriction is meant to permit execu-
tion of only trusted code and thus prevent untrusted code
to access content of the page.

In this work, we report on a fundamental problem of CSP.
CSP[28] defines how to protect content in an isolated page.
However, it does not take into consideration the page’s con-
text, that is its embedder or embedded iframes. In partic-
ular, CSP is unable to protect content of its corresponding
page if the page embeds (using the src attribute) an iframe
of the same origin. The CSP policy of a page will not be
applied to an embedded iframe. However, due to SOP, the
iframe has complete access to the content of its embedder.
Because same origin iframes are transparent due to SOP,
this opens loopholes to attackers whenever the CSP policy
of an iframe and that of its embedder page are not compat-
ible (see Fig. 1).

We analysed 1 million pages from the top 10,000 Alexa
sites and found that 5.29% of sites contain some pages with
CSPs (as opposed to 2% of home pages in previous stud-
ies[5]). We have identified that in 94% of cases, CSP may
be violated in presence of the document.domain API and in
23.5% of cases CSP may be violated without any assump-
tions (see Table 3).

During our study, we also identified a divergence among
browsers implementations in the enforcement of CSP[28] in

sandboxed iframes embedded with srcdoc. This actually re-
veals an inconsistency between the CSP and HTML5 sand-
box attribute specification for iframes.

We identify and discuss possible solutions from the devel-
oper point of view as well as new security specifications that
can help prevent this kind of CSP violations. We have made
publicly available the dataset that we used for our results
in[2]. We have installed an automatic crawler to recover the
same dataset every month to repeat the experiment taking
into account the time variable. An accompanying technical
report with a complete account of our analyses can be found
at[18].

In summary, our contributions are: (i) We describe a new
class of vulnerabilities that lead to CSP violations. (Sec-
tion 1). (ii) We perform a large and depth scale crawl of top
sites, highlighting CSP adoption at sites-level, as well as sites
origins levels. Using this dataset, we report on the possibili-
ties of CSP violations between the SOP and CSP in the wild.
(Section 3). (iii) We propose guidelines in the design and de-
ployment of CSP. (Section 3.4). (iv) We reveal an inconsis-
tency between the CSP specification and HTML5 sandbox
attribute specification for iframes. Different browsers choose
to follow different specifications, and we explain how any of
these choices can lead to new vulnerabilities. (Section 5).

2. CONTENT SECURITY POLICY AND SOP
The Content Security Policy (CSP)[19] is a mechanism

that allows programmers to control which client-side re-
sources can be loaded and executed by the browser. CSP
(version 2) is an official W3C candidate recommendation[28],
and is currently supported by major web browsers. CSP is
delivered in the Content-Security-Policy HTTP response
header, or in a <meta> element of HTML.

CSP applicability A CSP delivered with a page controls
the resources of the page. However it does not apply to
the page’s embedding resources[28]. As such, CSP does not
control the content of an iframe even if the iframe is from
the same origin as the main page according to SOP. Instead,
the content of the iframe is controlled by the CSP delivered
with it, that can be different from the CSP of the main page.

CSP directives CSP allows a programmer to specify
which resources are allowed to be loaded and executed in
the page. These resources are defined as a set of origins
and known as a source list. Additionally to controlling re-
sources, CSP allows to specify allowed destinations of the
AJAX requests by the connect-src directive. A special
header Content-Security-Policy-Report-Only configures
a CSP in a report-only mode: violations are recorded, but
not enforced. The directive default-src is a special fall-
back directive that is used when some directive is not de-
fined. The directive frame-ancestors (meant to supplant
the HTTP X-Frame-Options header[28]), controls in which
pages the current page may be included as an iframe, to
prevent clickjacking attacks[16]. See Table 1 for the most
commonly used CSP directives[22].

Source lists CSP source list is traditionally defined as a
whitelist indicating which domains are trusted to load the
content, or to communicate. For example, a CSP from List-
ing 1 allows to include scripts only from third.com, requires
to load frames only over HTTPS, while other resource types
can only be loaded from the same hosting domain.

1 Content-Security-Policy: default-src ’self
’;

Directive Controlled content
script-src Scripts
default-src All resources (fallback)
style-src Stylesheets
img-src Images
font-src Fonts
connect-src XMLHttpRequest, WebSocket or

EventSource
object-src Plug-in formats (object, embed)
report-uri URL where to report CSP violations
media-src Media (audio, video)
child-src Documents (frames), [Shared] Workers
frame-ancestors Embedding context

Table 1: Most common CSP directives[22].

2 script-src third.com; child-src https:

Listing 1: Example of a CSP policy.

A whitelist can be composed of concrete hostnames (third.com),
may include a wildcard * to extend the policy to subdomains
(*.third.com), a special keyword ’self’ for the same host-
ing domain, or ’none’ to prohibit any resource loading.

Restrictions on scripts Directive script-src is the
most used feature of CSP in today’s web applications[22].
It allows a programmer to control the origin of scripts in
his application using source lists. When the script-src

directive is present in CSP, it blocks the execution of any
inline script, JavaScript event handlers and APIs that ex-
ecute string data code, such as eval() and other related
APIs. To relax the CSP, by allowing the execution of in-
line <script> and JavaScript event handlers, a script-src

whitelist should contain a keyword ’unsafe-inline’. To
allow eval()-like APIs, the CSP should contain a ’unsafe-

eval’ keyword. Because ’unsafe-inline’ allows execution
of any inlined script, it effectively removes any protection
against XSS. Therefore, nonces and hashes were introduced
in CSP version 2[28], allowing to control which inline scripts
can be loaded and executed.

Sandboxing iframes Directive sandbox allows to load
resources but execute them in a separate environment. It ap-
plies to all the iframes and other content present on the page.
An empty sandbox value creates completely isolated iframes.
One can selectively enable specific features via allow-* flags
in the directive’s value. For example, allow-scripts will
allow executions of scripts in an iframe, and allow-same-

origin will allow iframes to be treated as being from their
normal origins.

Same-Site and Same-Origin Definitions.
In our terminology, we distinguish the web pages that be-

long to the same site from the pages that belong to the same
origin. By page we refer to any HTML document – for ex-
ample, the content of an iframe we call iframe page. In this
case, the page that embeds an iframe is called a parent page
or embedder.

By site we refer to the highest level domain that we ex-
tract from Alexa top 10,000 sites, usually containing the
domain name and a TLD, for example main.com. All the
pages that belong to a site, and to any of its subdomains as
sub.main.com, are considered same-site pages.

According to the Same Origin Policy, an origin of a page
is scheme, host and port of its URL. For example, in http:

http://main.com:81/dir/p.html

//main.com:81/dir/p.html, the scheme is “http”, the host
is “main.com” and the port is 81.

2.1 CSP violations due to SOP
Consider a web application, where the main page A.html

and its iframe B.html are located at http://main.com, and
therefore belong to the same origin according to the same-
origin policy. A.html, shown in Listing 2, contains a script
and an iframe from main.com. The local script secret.js

contains sensitive information given in Listing 3. To protect
against XSS, the developer behind http://main.com have
installed the CSP for its main page A.html, shown in List-
ing 4.

1 <html>
2 <script src="secret.js"></script>
3 ...
4 <iframe src="B.html"></iframe>
5 </html>

Listing 2: Source code of http://main.com/A.html.

1 var secret = "42";

Listing 3: Source code of secret.js.

1 Content-Security-Policy: default-src ’none
’;

2 script-src ’self’; child-src ’self’

Listing 4: CSP of http://main.com/A.html.

This CSP provides an effective protection against XSS:

2.1.1 Only parent page has CSP
According to the latest version of CSP1, only the CSP of

the iframe applies to its content, and it ignores completely
the CSP of the including page. In our case, if there is no CSP
in B.html then its resource loading is not restricted. As a
result, an iframe B.html without CSP is potentially vulner-
able to XSS, since any injected code may be executed within
B.html with no restrictions. Assume B.html was exploited
by an attacker injecting a script injected.js. Besides tak-
ing control over B.html, this attack now propagates to the
including page A.html, as we show in Fig. 1. The XSS at-
tack extends to the including parent page because of the
inconsistency between the CSP and SOP. When a parent
page and an iframe are from the same origin according to
SOP, a parent and an iframe share the same privileges and
can access each other’s code and resources.

For our example, injected.js is shown in Listing 5.
This script executed in B.html retrieves the secret value

from its parent page (parent.secret) and transmits it to
an attacker’s server http://attacker.com via XMLHttpRe-
quest2.

1 function sendData(obj , url){
2 var req = new XMLHttpRequest ();
3 req.open(’POST’, url , true);
4 req.send(JSON.stringify(obj));
5 }
6 sendData ({ secret: parent.secret}, ’http://

attacker.com/send.php ’);

Listing 5: Source code of injected.js.

1https://www.w3.org/TR/CSP2/#which-policy-applies
2The XMLHttpRequest is not forbidden by the SOP
for B.html because an attacker has activated the Cross-
Origin Resource Sharing mechanism[21] on her server
http://attacker.com.

A straightforward solution to this problem is to ensure
that the protection mechanism for the parent page also prop-
agates to the iframes from the same domain. Technically, it
means that the CSP of the iframe should be the same or
more restrictive than the CSP of the parent. In the next
example we show that this requirement does not necessarily
prevent possible CSP violations due to SOP.

2.1.2 Only iframe page has CSP
Consider a different web application, where the including

parent page A.html does not have a CSP, while its iframe
B.html contains a CSP from Listing 4. In this example,
B.html, shown in Listing 6 now contains some sensitive in-
formation stored in secret.js (see Listing 3).

1 <html>
2 ...
3 <script src="secret.js"></script>
4 </html>

Listing 6: Source code of http://main.com/B.html.

Since the including page A.html now has no CSP, it is po-
tentially vulnerable to XSS, and therefore may have a mali-
cious script injected.js. The iframe B.html has a restric-
tive CSP, that effectively contributes to protection against
XSS. Since A.html and B.html are from the same origin,
the malicious injected script can profit from this and steal
sensitive information from B.html. For example, the script
may call the sendData function with the secret information:

1 sendData ({ secret: children [0]. secret}, ’
http:// attacker.com/send.php ’);

Thanks to SOP, the script injected.js fetches the secret
from it’s child iframe B.html and sends it to http://attacker.com.

2.1.3 CSP violations due to origin relaxation
A page may change its own origin with some limitations.

By using the document.domain API, the script can change
its current domain to a superdomain. As a result, a shorter
domain is used for the subsequent origin checks3.

Consider a slightly modified scenario, where the main page
A.html from http://main.com includes an iframe B.html

from its sub-domain http://sub.main.com. Any script in
B.html is able to change the origin to http://main.com by
executing the following line:

1 document.domain = "main.com";

If A.com is willing to communicate with this iframe, it should
also execute the above-written code so that the communica-
tion with B.html will be possible. The content of B.html is
now treated by the web browser as the same-origin content
with A.html, and therefore any of the previously described
attacks become possible.

2.1.4 Categories of CSP violations due to SOP
We distinguish three different cases when the CSP viola-

tion might occur because of SOP:

Only parent page or only iframe has CSP A parent page
and an iframe page are from the same origin, but only
one of them contains a CSP. The CSP may be violated
due to the unrestricted access of a page without CSP

3https://developer.mozilla.org/en-US/docs/Web/
Security/Same-origin_policy#Changing_origin

http://main.com:81/dir/p.html
https://www.w3.org/TR/CSP2/#which-policy-applies
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin

to the content of the page with CSP. We demonstrated
this example in Sections 2.1.1 and 2.1.2.

Parent and iframe have different CSPs A parent page
and an iframe page are from the same origin, but they
have different CSPs. Due to SOP, the scripts from one
page can interfere with the content of another page
thus violating the CSP.

CSP violation due to origin relaxation A parent page
and an iframe page have the same higher level domain,
port and scheme, but however they are not from the
same origin. Either CSP is absent in one of them, or
they have different CSPs – in both cases CSP may be
violated because the pages can relax their origin to the
high level domain by using document.domain API, as
we have shown in Section 2.1.3.

3. EMPIRICAL STUDY OF CSP VIOLATIONS
We have performed a large-scale study on the top 10,000

Alexa sites to detect whether CSP may be violated due to
an inconsistency between CSP and SOP. For collecting the
data, we have used CasperJS[15] on top of PhantomJS head-
less browser[8]. The User-Agent HTTP header was instan-
tiated as a recent Google Chrome browser.

3.1 Methodology
The overview of our data collection and CSP comparison

process is given in Figure 2. The main difference in our
data collection process from previous works on CSP mea-
surements in the wild[22, 5] is that we crawl not only the
main pages of each site, but also other pages. First, we
collect pages accessible through links of the main page and
pointing to the same site. Second, to detect possible CSP vi-
olations due to SOP, we have collected all the iframes present
on the home pages and linked pages.

3.1.1 Data Collection
We run PhantomJS using as user agent Mozilla/5.0 (X11;

Linux x86 64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome51.0.2704.63 Safari/537.36. The study was performed
on an internal cluster of 200 cores, using OpenMP to benefit
from parallelization.

Home Page Crawler For each site in top 10,000 Alexa
list, we crawl the home page, parse its source code and ex-
tract three elements: (1) a CSP of the site’s home page
stored in HTTP header as well as in <meta> HTML tag; we
denote the CSPs of the home page by C; (2) to extract more
pages from the same site, we analyse the source of the links
via tag and extract URLs that point to the
same site, we denote this list by L. (3) we collect URLs of
iframes present on the home page via <iframe src=...> tag
and record only those belonging to the same site, we denote
this set by F .

Page Crawler We crawl all the URLs from the list of
pages L, and for each page we repeat the process of extrac-
tion of CSP and relevant iframes, similar to the steps (1)
and (3) of the home page crawler. As a result, we get a set
of CSPs of linked pages CL and a set of iframes URLs FL

that we have extracted from the linked pages in L.
Iframe Crawler
For every iframe URL present in the list of home page

iframes FH , and in the list of linked pages iframes FL, we

extract their corresponding CSPs and store in two sets: CF
for home page iframes and CLF for linked page iframes.

3.1.2 CSP adoption analysis
Since CSP is considered an effective countermeasure for

a number of web attacks, programmers often use it to miti-
gate such attacks on the main pages of their sites. However,
if CSP is not installed on some pages of the same site, this
can potentially leak to CSP violations due to the inconsis-
tency with SOP when another page from the same origin is
included as an iframe (see Figure 1). In our database, for
each site, we recorded its home page, a number of linked
pages and iframes from the same site. This allows us to
analyse how CSP is adopted at every popular site by check-
ing the presence of CSP on every crawled page and iframe
of each site. To do so, we analyse the extracted CSPs: C
for the home page, CL for linked pages, CF for home page
iframes, and CLF for linked pages iframes.

3.1.3 CSP violations detection
To detect possible CSP violations due to SOP, we have

analysed home pages and linked pages from the same site,
as well as iframes embedded into them.

CSP Selection
To detect CSP violations, we first remove all the sites

where no parent page and no iframe page contains a CSP.
For the remaining sites, we pointwise compare (1) the CSPs
of the home pages C and CSPs of iframes present on these
pages CF ; (2) the CSPs of the linked pages CL and CSPs
of their iframes CLF . To check whether a parent page CSP
and an iframe CSP are equivalent, we have applied the CSP
comparison algorithm (Figure 2)

CSP Preprocessing We first normalise each CSP policy,
by splitting it into its directives.

• If default-src directive is present (default-src is a
fallback for most of the other directives), then we ex-
tract the source list s of default-src. We analyse
which directives are missing in the CSP, and explic-
itly add them with the source list s.

• If default-src directive is absent, we extract miss-
ing directives from the CSP. In this case, there are
no restrictions in CSP for every absent directive. We
therefore explicitly add them with the most permis-
sive source list. A missing script-src is assigned *
’unsafe-inline’ ’unsafe-eval’ as the most permissive
source list [28].

• In each source list, we modify the special keywords: (i)
’self ’ is replaced with the origin of the page containing
the CSP; (ii) in case of ’unsafe-inline’ with hash or
nonce, we remove ’unsafe-inline’ from the directive
since it will be ignored by the CSP2. (iii) ’none’ key-
words are removed from all the directives; (iv) nonces
and hashes are removed from all the directives since
they cannot be compared; (iv) each whitelisted domain
is extended with a list of schemes and port numbers
from the URL of the page includes the CSP4.

4For example, according to CSP2, if the page scheme
is https, and a CSP contains a source example.com,
then the user agent should allow content only from
https://example.com, while if the current scheme is
http, it would allow both http://example.com and
https://example.com.

Figure 2: Data Collection and Analysis Process

Sites successfully crawled 9,885
Pages visited 1,090,226
Pages with iframe(s) from the same site 648,324
Pages with same-origin iframe(s) 92,430
Pages with same-origin iframe(s) where
page and/or iframe has CSP

692

Pages with CSP 21,961 (2.00%)
Sites with CSP on home page 228 (2.3%)
Sites with CSP on some pages 523 (5.29%)

Table 2: Crawling statistics

CSP Comparison We compare all the directives present
in the two CSPs to identify whether the two policies require
the same restrictions. Whenever the two CSPs are different,
our algorithm returns the names of directives that do not
match. The demonstration of the comparison is accessible
on[2]. For each directive in the policies we compare the
source lists and the algorithm proceeds if the elements of
the lists are identical in the normalised CSPs.

3.1.4 Limitations
Our methodology and results have two(2) limitations that

we explain here.
User interactions The automatic crawling process did

not include any real-user-like interactions with top sites. As
such the set of iframes and links URLs we have analysed is
an underestimate of all links and iframes a site may contain.

Pairs of (parent-iframe) In this study, we consider
CSP violations in same origin (parent, iframe) couples only.
Their are though further combinations such as couples of
sibling iframes in a parent page that we could have consid-
ered. Overall, our results are conservative, since the problem
might have been worst without those limitations.

3.2 Results on CSP Adoption
The crawling of Alexa top 10,000 sites was performed in

the end of August, 2016. To extract several pages from the
same site, we have also crawled all the links and iframes on
a page that point to the same site. In total, we have gath-
ered 1,090,226 from 9,885 different sites. On median, from
each site we extracted 45 pages, with a maximum number
of 9,055 pages found on tuberel.com. Our crawling statis-
tics is presented in Table 2. More than half of the pages
contain an iframe, and 13% of pages do contain an iframe
from the same site. This indicates the potential surface for

Figure 3: Percentage of pages with CSP per site

the CSP violations, when at least one page on the site has a
CSP installed. We discuss such potential CSP violation in
details in Section 3.3.3. Similarly to previous works on CSP
adoption[22, 5], we have found that CSP is present on only
228 out of 9,885 home pages (2.31%). While extending this
analysis to almost a million pages, we have found a similar
rate of CSP adoption (2.00%).

Differently from previous studies that anlaysed only home
pages, or only pages in separation, we have analysed how
many sites have at least some pages that adopted CSP. We
have grouped all pages by sites, and found that 5.29% of
sites contain some pages with CSPs. It means that CSP is
more known by the website developers, but for some reason
is not widely adopted on all the pages of the site.

We have then analysed how many pages on each site have
adopted CSPs. For each of 523 sites, we have counted how
many pages (including home page, linked pages and iframes)
have CSPs. Figure 3 shows that more than half of the sites
have a very low CSP adoption on their pages: on 276 sites
out of 529, CSP is installed on only 0-10% of their pages.
This becomes problematic if other pages without CSP are
not XSS-free. However, it is interesting to note that around
a quarter of sites do profit from CSP by installing it on 90-
100% of their pages.

3.3 Results on CSP violations due to SOP
As described in Section 2.1.4, we distinguish several cate-

gories of CSP violations when a parent page and an iframe
on this page are from the same origin according to SOP. To
account for possible CSP violations, we only consider cases
when either parent, or iframe, or both have a CSP installed.
From all the 21,961 pages that have CSP installed, we have
removed the pages, where CSPs are in report-only mode,
having left 18,035 pages with CSPs in enforcement mode.

Table 3 presents possible CSP violations due to SOP.

tuberel.com

Same-origin parent-iframe Possible to relax origin Total
Only parent page has CSP 83 1388 1471

Only iframe has CSP 16 240 256
Different CSPs in parent page and iframe 70 44 114

No CSP violations 551 109 660

CSP violations total 169 (23.5%) 1672 (94%) 1841

Table 3: Statistics CSP violations due to Same-Origin Policy

Same-origin parent-iframe Possible to relax origin
Only parent page CSP yandex.ru twitter.com, yandex.ru, mail.ru

Only iframe CSP amazon.com, imdb.com –*
Different CSP twitter.com –*

*Not found in top 100 Alexa sites.

Table 4: Sample of sites with CSP violations due to Same-Origin Policy

We have extracted the parent-iframe couples that might
cause a CSP violation because either (1) only parent or only
iframe installed a CSP, or (2) both installed different CSPs.
First, to account for direct violations because of SOP, we
distinguish couples where parent and iframe are from the
same origin (columns 2,3), we have found 720 cases of such
couples. Second, we analyse possible CSP violations due to
origin relaxation: we have collected 1781 couples that are
from different origins but their origins can be relaxed by
document.domain API (see more in Section 2.1.3) – these
results are shown in column 3.

In Table 4 we present the names of the domains out of top
100 Alexa sites, where we have found different CSP viola-
tions. Each company in this table have been notified about
the possible CSP violation. Concrete examples of the page
and iframe URLs and their corresponding CSPs for each
such violation can be found in the corresponding technical
report[18]. All the collected data is available online[2].

CSP violations in presence of document.domain Ac-
cording to our results, in presence of document.domain, 94%
of (parent, iframe) pages can have their CSP violated. Those
violations can occur only if both parent and iframes pages
execute document.domain to the same top level domain.
Thus, our result is an over-approximation, assuming that
document.domain is used in all of those pages and iframes.
According to[1], document.domain is used in less than 3% of
web pages.

3.3.1 Only parent page or only iframe has CSP
We first consider a scenario when a parent page and an

iframe are from the same origin, but only one of them con-
tains a CSP. Intuitively, if only a parent page has CSP, then
an iframe can violate CSP by executing any code and access-
ing the parent page’s DOM, inserting content, access cookies
etc. Among 720 parent-iframe couples from the same origin,
we have found 83 cases (11.5%) when only parent has a CSP,
and 16 cases (2.2%) when only iframe has a CSP. These CSP
violations originate from 13 (for parent) and 4 (for iframe)
sites. For example, such possible violations are found on
some pages of amazon.com, yandex.ru and imdb.com (see
Table 4). CSP of a parent or iframe may also be violated
because of origin relaxation. We have identified 1388 cases
(78%) of parent-iframe couples where such violation may oc-
cur because CSP is present only in the parent page. This was
observed on 20 different sites, including twitter.com, yan-

Figure 4: Differences in CSP directives for parent
and iframe pages

dex.ru and others. Finally, in 240 cases (13.5%) only iframe
has CSP installed, which was found on 11 different sites. We
manually checked the parent and iframes involved in CSP
violations for sites in Table 4. In all of those sites, either
the parent or the iframe page is a login page[2]. We further-
more checked how effective are the CSP of those pages, using
CSPEvaluator5, proposed by Lukas et al.[22]. and found out
that the CSP policies involved in these are moreover all by-
passable.

3.3.2 Parent and iframe have different CSPs
In a case when a page and iframe are from the same origin,

but their corresponding CSPs are different, may also cause
a violation of CSP. From the 720 same-origin parent-iframe
couples, we have found 70 cases (9.7%) (from 3 sites) when
their CSPs differ, and for an origin relaxation (from 6 sites)
case, we have identified only 44 such cases (2.5%). This
setting was found on some pages of twitter.com for instance.

We have further analysed the differences in CSPs found
on parent and iframe pages. For all the 114 pairs of parent-
iframe (either same-origin or possible origin relaxation), we
have compared CSPs they installed, directive-by-directive.
Figure 4 shows that every parent CSP and iframe CSP dif-
fer on almost every directive – between 90% and 100%. The
only exception is frame-ancestors directive, which is al-
most the same in different parent pages and iframes. If
properly set, this directive gives a strong protection against
clickjacking attacks, therefore all the pages of the same ori-
gin are equally protected.

5https://csp-evaluator.withgoogle.com/

Figure 5: Differences in CSP directives for same-
origin and relaxed origin pages

3.3.3 Potential CSP violations
A potential CSP violation may happen when in a site, ei-

ther some pages have CSP and some others do not, or pages
have different CSP. When those pages get nested as parent-
iframe, we can run into CSP violations, just like in the di-
rect CSP violations cases we have just reported above. To
analyse how often such violations may occur, we have anal-
ysed the 18,035 pages that have CSP in enforcement mode.
These pages originate from 729 different origins spread over
442 sites. Table 5 shows that 72% of CSPs (12,899 pages)
can be potentially violated, and these CSPs originate from
pages of 379 different sites (85.75%). To detect these vio-
lations, for each page with a CSP in our database, we have
analysed whether there exists another page from the same
origin, that does not have CSP. This page could embed the
page with CSP and violate it because of SOP. We have de-
tected 4381 such pages (24%) from 197 origins. Similarly, we
detected 1223 pages (7%) when there are same-origin pages
with a different CSP. Similarly, we have analysed when po-
tential CSP violations may happen due to origin relaxation.
We have detected 4728 pages (26%), whose CSP may be vi-
olated because of other pages with no CSP, and 2567 pages
(14%), whose CSP may be violated because of different CSP
on other relaxed-origin pages.

For the pages that have different CSPs, we have compared
how much CSPs differ. Figure 5 shows that CSPs mostly
differ in script-src directive, which protects pages from
XSS attacks. This means, that if one page in the origin does
whitelist an attacker’s domain or an insecure endpoints [22],
all the other pages in the same origin become vulnerable
because they may be inserted as an iframe to the vulnerable
page and their CSPs can be easily violated.

3.4 Responses of websites owners
We have reported those issues to a sample of sites own-

ers, using either HackerOne6, or contact forms when avail-
able. Here are some selected quotes from our discussions
with them.

“Yes, of course we understand the risk that un-
der some circumstances XSS on one domain can
be used to bypass CSP on another domain, but
it’s simply impossible to implement CSP across
all (few hundreds) domains at once on the same
level. We are implementing strongest CSP cur-
rently possible for different pages on different do-
mains and keep going with this process to protect
all pages, after that we will strengthen the CSP.

6https://hackerone.com

We believe it’s better to have stronger CSP pol-
icy where possible rather than have same weak
CSP on all pages or not having CSP at all. Hav-
ing in mind there are hundreds of domains within
mail.ru, at least few years are required before all
pages on all domains can have strong CSP.” –
Mail.ru

“[...]the sandbox is a defense in depth mitigation[...].
We definitely don’t allow relaxing document.domain
on www.dropbox.com[...]” – Dropbox.com

“While this is an interesting area of research, are
you able to demonstrate that this behavior is cur-
rently exploitable on Twitter? It appears that
the behavior you have described can increase the
severity of other vulnerabilities but does not pose
a security risk by itself. Is our understanding
correct? [...]We consider this to be more of a de-
fensive in depth and will take into account with
our continual effort to improve our CSP policy”
– Twitter.com

“I believe we understand the risk as you’ve de-
scribed it.” – Imdb.com

4. AVOIDING CSP VIOLATIONS
Preventing CSP violations due to SOP can be achieved

by having the same effective CSP for all same-origin pages
in a site, and prevent origin relaxation.

Origin-wide CSP: Using CSP for all same-origin pages
can be manually done but this solution is error-prone. A
more effective solution is the use of a specification such as
Origin Policy[27] in order to set a header for the whole origin.

Preventing Origin Relaxation: Having an origin-wide
CSP is not enough to prevent CSP violations. By using
origin relaxation, pages from different origins can bypass the
SOP[17]. Many authors provide guidelines on how to design
an effective CSP[22]. Nonetheless, even with an effective
CSP, an embedded page from a different origin in the same
site can use document.domain to relax its origin. Preventing
origin relaxation is trickier.

Programmatically, one could prevent other scripts from
modifying document.domain by making a script run first in
a page[20]. The first script that runs on the page would be:

1 Object.defineProperty(document , "domain",
{ __proto__: null , writable: false ,
configurable: false});

A parent page can also indirectly disable origin relaxation
in iframes by sandboxing them. This can be achieved by
using sandbox as an attribute for iframes or as directive
for the parent page CSP. Unfortunately, an iframe cannot
indirectly disable origin relaxation in the page that embeds
it. However, the frame-ancestors directive of CSP gives
an iframe control over the hosts that can embed it. Finally,
a more robust solution is the use of a policy to deprecate
document.domain as proposed in the draft of Feature pol-
icy[29]. The feature policy defines a mechanism that allows
developers to selectively enable and disable the use of vari-
ous browser features and APIs.

Iframe sandboxing: Combining attribute allow-scripts
and allow-same-origin as values for sandbox successfully

Pages Origins Sites
A same origin page has no CSP 4381 197 197
A same origin page has a different CSP 1223 23 23
Total Potential violations due to same origin pages 5604 (31.1%) - -

A same origin (after relaxation) page has no CSP 4728 340 183
A same origin (after relaxation) has a different CSP 2567 135 44
Total Potential violations due to same origin (after relaxation 7295(40.4%) - -

Potential violations total 12899 (72%) 591 (81%) 379 (52%)

Table 5: Potential CSP violations in pages with CSP

disables document.domain in an iframe7. We recommend the
use of sandbox as a CSP directive, instead of an HTML
iframe attribute. The first reason is that sandbox as a
CSP directive, automatically applies to all iframes that are
in a page, avoiding the need to manually modify all HTML
iframe tags. Second, the sandbox directive is not program-
matically accessible to potentially malicious scripts in the
page, as is the case for the sandbox attribute (which can
be removed from an iframe programmatically, replacing the
sandboxed iframe with another identical iframe but without
the sandbox attribute).

Limitations An origin-wide CSP (the same CSP for all
same origin pages) can become very liberal if all same origin
pages do not require the same restrictions. In order to imple-
ment the solution we propose, one needs to consider the in-
tended relation between a parent page and an iframe page, in
presence of CSP. In the case where the two(2) pages should
be allowed direct access to each other content, then, since
same origin pages can bypass page-specific security charac-
teristics [9], the solution is to have the same CSP for both
the page and the iframe. However, if direct access to each
other content is not a required feature, one can keep different
CSPs in parent and iframe, or have no CSP at all in one of
the parties, but their contents should be isolated from each
other. The solution here is to use sandboxing. Nonetheless,
there are other means (such as postMessage) by which one
can securely achieve communication between the pages.

5. INCONSISTENT IMPLEMENTATIONS
Combining origin-wide CSP with allow-scripts sandbox

directive would have been sufficient at preventing the incon-
sistencies between CSP and the same origin policy. Unfor-
tunately, we have discovered that for some browsers, this
solution is not sufficient. Starting from HTML5, major
browsers, apart from Internet Explorer, supports the new
srcdoc attribute for iframes. Instead of providing a URL
which content will be loaded in an iframe, one provides di-
rectly the HTML content of the iframe in the srcdoc at-
tribute. According to CSP2 [28], §5.2, the CSP of a page
should apply to an iframe which content is supplied in a
srcdoc attribute. This is actually the case for all majors
browsers, which support the srcdoc attribute. However,
there is a problem when the sandbox attribute is set to an
srcdoc iframe.

7We found out that dropbox.com actually puts sandbox
attribute for all its iframes, and therefore avoids the possible
CSP violations. We have had a very interesting discussion on
Hackerone.com with Devdatta Akhawe, a Security Engineer
at Dropbox, who told us more about their security practices
regarding CSP in particular.

Webkit-based8 and Blink-based9 browsers (Chrome, Chromium,
Opera) always comply with CSP. The CSP of a page will ap-
ply to all srcdoc iframes, even in those iframes which have
a different origin than that of the page, because they are
sandboxed without allow-same-origin .

In contrast, we noticed that in Gecko-based browsers (Mozilla
Firefox), the CSP of the page applies to that of the srcdoc
iframe if and only if allow-same-origin is present as value
for the attribute. Otherwise it does not apply. The prob-
lem with this choice is the following. A third party script,
whitelisted by the CSP of the page, can create a srcdoc
iframe, sandboxing it with allow-scripts only, and load any
resource that would normally be blocked by the CSP of the
page if applied in this iframe. This way, the third party
script successfully bypasses the restrictions of the CSP of
the page. Even though loading additional scripts is consid-
ered harmless in the upcoming version 3 [26, 22] of CSP,
this specification says nothing about violations that could
occur due to the loading of other resources inside a srcdoc
sandboxed iframe, like resources whitelisted by object-src
directive for instance, additional iframes etc.

We have notified the W3C, and the Mozilla Security Group.
Daniel Veditz, a lead at Mozilla Security Group, recognizes
this as a bug and explains:

“Our internal model only inherits CSP into same-
origin frames (because in theory you’re otherwise
leaking info across origin boundaries) and iframe
sandbox creates a unique origin. Obviously we
need to make an exception here (I think we man-
age to do the same thing for src=data: sandboxed
frames).”

CSP specification and srcdoc iframes The problem
of imposing a CSP to an unknown page is illustrated by
the following example[25]. If a trusted third party library,
whitelisted by the CSP of the page, uses security libraries
inside an isolated context (by sandboxing them in a srcdoc
iframe, setting allow-scripts as sole value for the sand-
box) then, the page’s CSP will block the security libraries
and possibly introduce new vulnerabilities. Because of this,
it was unclear to us the intent of CSP designers regard-
ing srcdoc iframes. Mike West, one of the CSP editors at
the W3C and also Developer Advocate in Google Chrome’s
team, clarified this to us:

“I think your objection rests on the notion of the
same-origin policy preventing the top-level doc-
ument from reaching into it’s sandboxed child.
That seems accurate, but it neglects the bigger

8https://en.wikipedia.org/wiki/WebKit
9https://en.wikipedia.org/wiki/Blink (web engine)

dropbox.com
Hackerone.com

picture: srcdoc documents are produced entirely
from the top-level document context. Since those
kinds of documents are not delivered over the net-
work, they don’t have the opportunity to deliver
headers which might configure their settings. We
impose the parent’s policy in these cases, because
for all intents and purposes, the srcdoc document
is the parent document.”

6. RELATED WORK
CSP has been proposed by Stamm et al.[19] as a refine-

ment of SOP[3], in order to help mitigate Cross-Site-Scripting[30]
and data exfiltration attacks. The second version[28] of the
specification is supported by all major browsers, and the
third version [26] is under active development. Even though
CSP is well supported [5], its endorsement by web sites is
rather slow. Weissbacher et al.[24] performed the first large
scale study of CSP deployment in top Alexa sites, and found
that around 1% of sites were using CSP at the time. A more
recent study by Calzavara et al.[5], show that nearly 8% of
Alexa top sites now have CSP deployed in their front pages.
Another recent study, by Weichselbaum et al.[22] come with
similar results to the study of Weissbacher et al.[24]. Our
work extends previous results by analysing the adoption of
CSP by site not only considering front pages but all the
pages in a site. Almost all authors agree that CSP adoption
is not a straightforward task, and lots of (manual) effort
are needed in order to reorganize and modify web pages to
support CSP.

Therefore, in order to help web sites developers in adopt-
ing CSP, Javed proposed CSP Aider, [10] that automati-
cally crawl a set of pages from a site and propose a site-wide
CSP. Patil and Frederik[14] proposed UserCSP, a framework
that monitors the browser internal events in order to auto-
matically infer a CSP for a web page based on the loaded
resources. Pan et al.[13] propose CSPAutoGen, to enforce
CSP in real-time on web pages, by rewriting them on the fly
client-side. Weissbacher et al.[24] have evaluated the feasi-
bility of using CSP in report-only mode in order to generate
a CSP based on reported violations, or semi-automatically
inferring a CSP policy based on the resources that are loaded
in web pages. They concluded that automatically generat-
ing a CSP is ineffective. A difficulty which remains is the
use of inline scripts in many pages. The first solution is
to externalize inline scripts, as can be done by systems like
deDacota[6]. Kerschbaumer et al.[12] find that too many
pages are still using ’unsafe-inline’ in their CSPs. They
propose a system to automatically identify legitimate inline
scripts in a page, thereby whitelisting them in the CSP of
the underlying page, using script hashes.

Another direction of research on CSP, has been evaluat-
ing its effectiveness at successfully preventing content injec-
tion attacks. Calzavara et al.[5] found out that many CSP
policies in real web sites have errors including typos, ill-
formed or harsh policies. Even when the policies are well
formed, they have found that almost all currently deployed
CSP policies are bypassable because of a misunderstanding
of the CSP language itself. Patil and Frederik found similar
errors in their study[14]. Hausknecht et al.[7] found that
some browser extensions, modified the CSP policy headers,
in order to whitelist more resources and origins. Van Acker
et al.[4] have shown that CSP fails at preventing data exfil-
tration specially when resources are prefetched, or in pres-

ence of a CSP policy in the HTML meta tag, because the
order in which resources are loaded in a web application is
hard to predict. Johns[11] proposed hashes for static scripts,
and PreparedJS, an extension for CSP, in order to securely
handle server-side dynamically generated scripts based on
user input. Weichselbaum et al.[22] have extended nonces
and hashes, introduced in CSP level 2[28], to remote scripts
URLs, specially to tackle the high prevalence of insecure
hosts in current CSP policies. Furthermore, they have in-
troduced strict-dynamic. This new keyword states that
any additional script loaded by a whitelisted remote script
URL is considered a trusted script as well. They also pro-
vide guidelines on how to build an effective CSP. Jackson
and Barth[9] have shown that same origin pages can bypass
page-specific policies, like CSP. Though, their work predates
CSP. To the best of our knowledge, we are the first to explore
the interactions between CSP and SOP and report possible
CSP violations.

7. CONCLUSIONS
In this work, we have revealed a new problem that can

lead to violations of CSP. We have performed an in-depth
analysis of the inconsistency that arises due to CSP and SOP
and identified three cases when CSP may be violated.

To evaluate how often such violations happen, we per-
formed a large-scale analysis of more than 1 million pages
from 10,000 Alexa top sites. We have found that 5.29% of
sites contain pages with CSPs (as opposed to 2% of home
pages in previous studies).

We have also found out that 72% of current web pages
with CSP, are potentially vulnerable to CSP violations. This
concerns 379 (72.46%) sites that deploy CSP. Further analysing
the contexts in which those web pages are used, our results
show that when a parent page includes an iframe from the
same origin according to SOP, in 23.5% of cases their CSPs
may be violated. And in the cases where document.domain

is required in both parent and iframes, we identified that
such violations may occur in 94% of the cases.

We discussed measures to avoid CSP violations in web ap-
plications by installing an origin-wide CSP and using sand-
boxed iframes. Finally, our study reveals an inconsistency
in browsers implementation of CSP for srcdoc iframes, that
appeared to be a bug in Mozilla Firefox browsers.

Acknowledgments
The authors would like to thank the WebAppSec W3C Work-
ing Group for useful pointers to related resources at the
early stage of this work, Mike West for very insightful discus-
sions that considerably helped improve this work, Devdatta
Akhawe for discussing some security practices at Dropbox,
and anonymous reviewers and Stefano Calzavara for their
valuable comments and suggestions.

8. REFERENCES
[1] Chrome Platform Status.

https://www.chromestatus.com/metrics/feature/

popularity#DocumentSetDomain.

[2] CSP violations online.
https://webstats.inria.fr?cspviolations.

[3] Same Origin Policy. https:
//www.w3.org/Security/wiki/Same_Origin_Policy.

[4] S. V. Acker, D. Hausknecht, and A. Sabelfeld. Data
Exfiltration in the Face of CSP. In X. Chen, X. Wang,
and X. Huang, editors, Proceedings of the 11th ACM
on Asia Conference on Computer and
Communications Security, AsiaCCS 2016, Xi’an,
China, May 30 - June 3, 2016, pages 853–864. ACM,
2016.

[5] S. Calzavara, A. Rabitti, and M. Bugliesi. Content
Security Problems?: Evaluating the Effectiveness of
Content Security Policy in the Wild. In Weippl et al.
[23], pages 1365–1375.

[6] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado,
C. Kruegel, and G. Vigna. deDacota: toward
preventing server-side XSS via automatic code and
data separation. In A. Sadeghi, V. D. Gligor, and
M. Yung, editors, 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages
1205–1216. ACM, 2013.

[7] D. Hausknecht, J. Magazinius, and A. Sabelfeld. May
I? - Content Security Policy Endorsement for Browser
Extensions. In M. Almgren, V. Gulisano, and
F. Maggi, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment - 12th
International Conference, DIMVA 2015, Milan, Italy,
July 9-10, 2015, Proceedings, volume 9148 of Lecture
Notes in Computer Science, pages 261–281. Springer,
2015.

[8] A. Hidayat. PhantomJS Headless Browser, 2010-2016.

[9] C. Jackson and A. Barth. Beware of Finer-Grained
Origins. In Web 2.0 Security and Privacy (W2SP
2008), 2008.

[10] A. Javed. CSP Aider: An Automated
Recommendation of Content Security Policy for Web
Applications. In IEEE Oakland Web 2.0 Security and
Privacy (W2SP’12), 2012.

[11] M. Johns. PreparedJS: Secure Script-Templates for
JavaScript. In Detection of Intrusions and Malware,
and Vulnerability Assessment - 10th International
Conference, DIMVA 2013, Berlin, Germany, July
18-19, 2013. Proceedings, pages 102–121, 2013.

[12] C. Kerschbaumer, S. Stamm, and S. Brunthaler.
Injecting CSP for Fun and Security. In O. Camp,
S. Furnell, and P. Mori, editors, Proceedings of the 2nd
International Conference on Information Systems
Security and Privacy (ICISSP 2016), Rome, Italy,
February 19-21, 2016., pages 15–25. SciTePress, 2016.

[13] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and
T. Zhou. CSPAutoGen: Black-box Enforcement of
Content Security Policy upon Real-world Websites. In
Weippl et al. [23], pages 653–665.

[14] K. Patil and B. Frederik. A Measurement Study of the
Content Security Policy on Real-World Applications.
I. J. Network Security, 18(2):383–392, 2016.

[15] N. Perriault. CasperJS navigation and scripting tool
for PhantomJS, 2011-2016.

[16] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking
vulnerabilities at popular sites. In in IEEE Oakland
Web 2.0 Security and Privacy (W2SP 2010), 2010.

[17] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On
the Incoherencies in Web Browser Access Control
Policies. In 31st IEEE Symposium on Security and
Privacy, S&P 2010, 16-19 May 2010,
Berleley/Oakland, California, USA, pages 463–478,
2010.

[18] D. F. Some, N. Bielova, and T. Rezk. On the Content
Security Policy violations due to the Same-Origin
Policy. Technical report. http://www-sop.inria.fr/
members/Nataliia.Bielova/papers/CSP-SOP.pdf.

[19] S. Stamm, B. Sterne, and G. Markham. Reining in the
web with content security policy. In M. Rappa,
P. Jones, J. Freire, and S. Chakrabarti, editors,
Proceedings of the 19th International Conference on
World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, pages 921–930.
ACM, 2010.

[20] N. Swamy, C. Fournet, A. Rastogi, K. Bhargavan,
J. Chen, P. Strub, and G. M. Bierman. Gradual
typing embedded securely in JavaScript. In
S. Jagannathan and P. Sewell, editors, The 41st
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages
425–438. ACM, 2014.

[21] A. van Kesteren. Cross Origin Resource Sharing. W3C
Recommendation, 2014.

[22] L. Weichselbaum, M. Spagnuolo, S. Lekies, and
A. Janc. CSP Is Dead, Long Live CSP! On the
Insecurity of Whitelists and the Future of Content
Security Policy. In Weippl et al. [23], pages 1376–1387.

[23] E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, editors. Proceedings of the 2016
ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October
24-28, 2016. ACM, 2016.

[24] M. Weissbacher, T. Lauinger, and W. K. Robertson.
Why Is CSP Failing? Trends and Challenges in CSP
Adoption. In Research in Attacks, Intrusions and
Defenses - 17th International Symposium, RAID
2014, Gothenburg, Sweden, September 17-19, 2014.
Proceedings, pages 212–233, 2014.

[25] M. West. Content Security Policy: Embedded
Enforcement, 2016.

[26] M. West. Content Security Policy Level 3. W3C
Working Draft, 2016.

[27] M. West. Origin Policy. A Collection of Interesting
Ideas, 2016.

[28] M. West, A. Barth, and D. Veditz. Content Security
Policy Level 2. W3C Candidate Recommendation,
2015.

[29] M. West and I. Grigorik. Feature Policy. W3C Draft
Community Group Report, 2016.

[30] I. Yusof and A. K. Pathan. Mitigating Cross-Site
Scripting Attacks with a Content Security Policy.
IEEE Computer, 49(3):56–63, 2016.

https://www.chromestatus.com/metrics/feature/popularity#DocumentSetDomain
https://www.chromestatus.com/metrics/feature/popularity#DocumentSetDomain
https://webstats.inria.fr?cspviolations
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
http://www-sop.inria.fr/members/Nataliia.Bielova/papers/CSP-SOP.pdf
http://www-sop.inria.fr/members/Nataliia.Bielova/papers/CSP-SOP.pdf

Securing Concurrent Lazy Programs

(Extended Abstract, Work-In-Progress)

Marco Vassena1, Joachim Breitner2, and Alejandro Russo1

1 Chalmers University of Technology

{vassena,russo}@chalmers.se
2 University of Pennsylvania

joachim@cis.upenn.edu

Information-Flow Control [11] (IFC) scrutinizes source code to track how data of

different sensitivity levels (e.g., public or sensitive) flows within a program, and raises

alarms when confidentiality might be at stake. There are several special-purpose compil-

ers and interpreters which apply this technology: Jif [7] (based on Java), FlowCaml [9]

(based on Caml and not developed anymore), Paragon [1] (based on Java), and JS-

Flow [4] (based on JavaScript). Rather than writing compilers/interpreters, IFC can also

be provided as a library in the functional programming language Haskell [5].

Haskell’s type system enforces a disciplined separation of side-effect free code from

side-effectful code, which makes it possible to introduce input and output (I/O) to the

language without compromising on its purity. Computations performing side-effects are

encoded as values of abstract types which have the structure of monads [6]. This dis-

tinctive feature of Haskell is exploited by state-of-the-art IFC libraries (e.g., LIO [15]

and MAC [10]) to identify and restrict “leaky” side-effects without requiring changes

to the language or runtime.

Another distinctive feature of Haskell is its lazy evaluation strategy. The evaluation

is non-strict, as function arguments are not evaluated until required by the function, and

it performs sharing, as the values of such arguments are stored for subsequent uses.

In contrast, eager or strict evaluation reduces function arguments to its denoted values

before executing the function’s body.

There are many arguments for choosing between lazy and eager evaluation. From a

security point of view it is unclear which evaluation strategy is more suitable to preserve

secrets. To start addressing this subtlety, we need to consider the interaction between

evaluation strategies and covert channels.

Sabelfeld and Sands [12] suggest that lazy evaluation might be intrinsically safer

than eager evaluation for leaks produced by termination, as lazy evaluation could skip

the execution of unneeded non-terminating computations that might involve secrets. In

multi-threaded systems, where termination leaks are harmful [14], a lazy evaluation

strategy seems to be the appropriate choice.

A lazy attack Unfortunately, although lazy evaluation could “save the day” when it

comes to termination leaks, it is also vulnerable to leaks via another covert channel

due to sharing. Recently [3], Buiras and Russo showed an attack against the LIO li-

brary [14] where lazy evaluation is exploited to leak information via the internal timing

covert channel [13]. This covert channel manifests by the mere presence of concurrency

and shared resources. It gets exploited by setting up threads to race for a public shared

let ℓ = [1 . . 10000000]
r = sum ℓ

in do forkLIO -- Secret thread

(do s← unlabel secret

when (s ≡ 1 ∧ r > 10) return ())
no_ops ;no_ops

-- Public threads

forkLIO (do sendPublicMsg (r − r))
forkLIO (do no_ops ; sendPublicMsg 1)

Fig. 1: Lazy evaluation attack

resource in such a way that the secret value affects their timing and hence the winner of

the race. LIO removes such leaks for those public shared-resources which can be iden-

tified by the library, such as references and file descriptors. Due to lazy evaluation, vari-

ables introduced by let-bindings and function applications—which are beyond LIO’s

control3—become shared resources and their evaluation affects the threads’ timing be-

havior.

Figure 1 shows the attack. In LIO, every thread has a current label which serves

a role similar to the program counter in traditional IFC systems [16]. The first thread

inspects a secret value (s← unlabel secret), which sets the current label to secret. We

refer to threads with such current label as secret threads. The other spawned threads

have their current label set to public, therefore we call them public threads. Observe

that the variable r hosts an expression that is somewhat expensive to calculate, as it

first builds a list with ten million numbers (ℓ = [1 . . 10000000]) before summing up its

elements (r = sum ℓ). Importantly, it is referenced by both the secret and the public

threads. Note that every thread is secure in isolation—the secret thread always returns

() and the public threads read no secret. Assume that the expression no_ops is some

irrelevant computation that takes slightly longer than half the time it takes to sum up

the ten million numbers. Then the public threads race to send a message on a shared-

public channel using the function sendPublicMsg :

⊲ If s ≡ 1 then the secret has by now evaluated the expression referenced by r , in

order to check if r > 10 holds. Due to sharing, the first public thread will not have to

re-calculate r and can output 0 almost imediately, while the other public thread is still

occupied with no_ops .

⊲ If s ≡ 0 then the secret thread did not touch r . While the first public now has to

evaluate r the second public thread has enough time to perform no_ops and output 1
first.

3 As a shallow EDSL, LIO reuses much of the host language features to provide security (e.g.,

type-system and variable bindings). This design choice makes the code base small at the price

of not fully controlling the features provided by the host language.

Thus, the last message on the public channel reveals the secret s. This attack can be

magnified to a point where whole secrets are leaked systematically and efficiently [14].

Similar to LIO, other state-of-the-art concurrent IFC Haskell libraries [2, 10] suffer

from this attack.

A naïve fix is to force the variable r to be fully evaluated before any public threads

begin their execution. This works, but it defeats a main purpose of lazy evaluation,

namely to avoid evaluating unneeded expressions. Furthermore, it is not always possible

to evaluate expressions to their denoted value. Haskell programmers like to work with

infinite structures, even though only finite approximation of them are actually used by

programs. For example, if variable ℓ in Figure 1 were the list [1 / n | n ← [1 . .]]
of reciprocals of all natural numbers and r the sum of those bigger than one millionth

(r = sum (takeWhile (> 1e−6) ℓ)). The evaluation of r uses only a finite portion

of ℓ, so the modified program still terminates. But naïvely forcing ℓ to normal form

would hang the program. This demonstrates that simply forcing evaluation as a security

measure is unsatisfying, as it can introduce divergence and thus change the meaning of

a program.

Contributions Instead, we present a novel approach to explicitly control sharing at

the language level. We design a new primitive called lazyDup which lazily duplicates

unevaluated expressions. The attack in Figure 1 can then be neutralized by replacing r

with lazyDup r in the secret thread, which will then evaluate its own copy of r , without

affecting the public threads. We present this primitive in the context of the security li-

brary MAC [10], which statically enforces IFC in Haskell. By injecting lazyDup when

spawning secret threads, we demonstrate that internal timing leaks via lazy evaluation

are closed. Primitive lazyDup is not only capable to secure MAC against lazy leaks,

but also a wide range of other security Haskell libraries (e.g., LIO and HLIO). We

are optimistic that a prototype implementation of lazyDup is feasible without compiler

or runtime modifications to the Glasgow Haskell Compiler4. To the best of our knowl-

edge, we are the first ones to formally address the problem of internal timing leaks

via lazy evaluation. We prove that well-typed programs satisfies progress-sensitive non-

interference (PSNI) for a wide-range of deterministic schedulers. Our security are sup-

ported by mechanized proofs in the Agda proof assistant [8] and are parametric on

the chosen (deterministic) scheduler5. As a by-prodcut of interest for the programming

language community, we provide—to the best of our knowledge—the first operational

semantics for lazy evaluation with mutable reference.

References

1. Broberg, N., van Delft, B., Sands, D.: Paragon for practical programming with information-

flow control. In: APLAS. LNCS, vol. 8301, pp. 217–232. Springer (2013)

2. Buiras, P., Vytiniotis, D., Russo, A.: HLIO: Mixing static and dynamic typing for

information-flow control in Haskell. In: ACM SIGPLAN International Conference on Func-

tional Programming. ACM (2015)

4 https://www.haskell.org/ghc/
5 Available at https://github.com/marco-vassena/lazy-mac

https://www.haskell.org/ghc/
https://github.com/marco-vassena/lazy-mac

3. Buiras, P., Russo, A.: Lazy programs leak secrets. In: Nordic Conference in Secure IT Sys-

tems. Springer-Verlag (2013)

4. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: Tracking information flow in

JavaScript and its APIs. In: ACM Symposium on Applied Computing. ACM (2014)

5. Li, P., Zdancewic, S.: Encoding information flow in Haskell. In: IEEE Workshop on Com-

puter Security Foundations. IEEE Computer Society (2006)

6. Moggi, E.: Notions of computation and monads. Information and Computation 93(1), 55–92

(1991)

7. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: ACM Symp. on

Principles of Programming Languages. pp. 228–241 (1999)

8. Norell, U.: Dependently typed programming in agda. In: Kennedy, A., Ahmed, A. (eds.) Pro-

ceedings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in Languages

Design and Implementation, Savannah, GA, USA, January 24, 2009. pp. 1–2. ACM (2009),

http://doi.acm.org/10.1145/1481861.1481862

9. Pottier, F., Simonet, V.: Information Flow Inference for ML. In: ACM Symp. on Principles

of Programming Languages. pp. 319–330 (2002)

10. Russo, A.: Functional Pearl: Two Can Keep a Secret, if One of Them Uses Haskell. In: ACM

SIGPLAN International Conference on Functional Programming. ICFP, ACM (2015)

11. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE J. Selected

Areas in Communications 21(1), 5–19 (2003)

12. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential programs.

Higher Order Symbol. Comput. 14(1) (Mar 2001)

13. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative language. In:

ACM symposium on Principles of Programming Languages (1998)

14. Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J.C., Maziéres, D.: Addressing covert ter-

mination and timing channels in concurrent information flow systems. In: ACM SIGPLAN

International Conference on Functional Programming. ACM (2012)

15. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information flow con-

trol in Haskell. In: ACM SIGPLAN Haskell symposium (2011)

16. Volpano, D., Smith, G., Irvine, C.: A Sound Type System for Secure Flow Analysis. J. Com-

puter Security 4(3), 167–187 (1996)

http://doi.acm.org/10.1145/1481861.1481862

